Skip to main content
Log in

Features of Phase Formation in Al–TiO2 Powder Mixture Under Changing Temperature

  • Published:
Russian Physics Journal Aims and scope

Reactions of phase formation proceeding during synthesis in an Al–TiO2 system are analyzed. The problem of the phase composition change in the vicinity of particles, where the change of the regions occupied by the phases is related to the moving boundaries, has been formulated. An approximate analytical solution is constructed. Kinetic regularities of the strengthening particle formation and the matrix composition evolution in its vicinity have been studied under the assumption that the reactions start at a temperature higher than the melting temperature of aluminum surrounding titanium oxide solid particles. The temperature is a function of the time and follows from the solution of the macro problem. The accompanying stresses and strains in the vicinity of the interface averaged over the cell volume are evaluated. During cooling both diffusion and reactions are inhibited, which leads to slowing down the growth of stresses; however, their values remain rather high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Raji, A. P. I. Popoola, S. L. Pityana, et al., Laser Based Additive Manufacturing Technology for Fabrication of Titanium Aluminide-Based Composites in Aerospace Component Applications, IntechOpen, London (2019); DOI: https://doi.org/10.5772/intechopen.85538.

    Article  Google Scholar 

  2. M. Kulkarni, A. Mazare, and P. Schmuki, in: Nanomedicine, A. Seifalian, ed., One Central Press, Manchester (2014), pp. 111–136.

  3. A. Shahzad, V. Yu. Zadorozhnyy, M. D. Pavlov, et al., J. Alloys Compd., 731, 1295−1302 (2018).

    Article  Google Scholar 

  4. G. Yoruk and O. Ozdemir, Intermetallics, 25, 60–65 (2012).

    Article  Google Scholar 

  5. Y. Liu, D. Wang, C. Deng, et al., J. Alloys Compd., 628, 208–212 (2015).

    Article  Google Scholar 

  6. D. Vojtěch, T. Kubatık, M. Pavlıckova, and J. Maixner, Intermetallics, 14, 1181–1186 (2006).

    Article  Google Scholar 

  7. A. N. D. Gasper, S. Catchpole-Smith, and A. T. Clare, J. Mater. Process. Technol., 239, 230−239 (2017).

    Article  Google Scholar 

  8. M. N. Mosallanejad, B. Niroumand, A. Aversa, and A. Saboori, J. Alloys Compd., 872, 159567 (2021); DOI https://doi.org/10.1016/j.jallcom.2021.159567.

  9. P. Wang, J. Eckert, K. Prashanth, et al., Trans. Nonferrous Met. Soc. China., 30, 2001−2034 (2020).

    Article  Google Scholar 

  10. A. G. Knyazeva, J. Appl. Mech. Tech. Phys., 62, No. 6 (370), 1001–1007 (2021).

  11. V. G. Kirilenko, L. I. Grishin, A.Yu. Dolgoborodov, and M. A. Brazhnikov, Combust. Explos., 13, No. 1, 145–155 (2020).

    Google Scholar 

  12. A. E. Ligachev, G. V. Potemkin, O. K. Lepakova, et al., Combust. Explos. Shock Waves, 54, No. 2, 158–164 (2018).

    Article  Google Scholar 

  13. D. Horvitza, I. Gotmana, E. Y. Gutmanasa, and N. Claussen, J. Eur. Ceram. Soc., 22, 947–954 (2002).

    Article  Google Scholar 

  14. C. L. Yeh, C. W. Kuo, and Y. C. Chu, J. Alloys Compd., 494, Nos. 1–2, 132–136 (2010).

    Article  Google Scholar 

  15. V. P. Kobyakov, V. D. Zozulya, M. A. Sichinava, et al., Combust. Explos. Shock Waves, 41, No. 4, 414–420 (2005).

    Article  Google Scholar 

  16. S. Meng, X. Zhang, and W. Zhang, Key Eng. Mater., 336–338, 2340–2343 (2007).

    Article  Google Scholar 

  17. H. G. Zhu, J. Min, Y. L. Ai, and Q. Wu, Adv. Mater. Res., 97101, 1624–1627 (2010); DOI: https://doi.org/10.4028/www.scientific.net/amr.97-101.1624.

    Article  Google Scholar 

  18. R. Kainuma, M. Palm, and G. Inden, Intermetallics, 2, 321–332 (1994).

    Article  Google Scholar 

  19. R. Fan, B. Liu, J. Zhang, et al., Mater. Chem. Phys., 91, No. 1, 140–145 (2005); DOI: https://doi.org/10.1016/j.matchemphys.2004.11.004.

    Article  Google Scholar 

  20. C. F. Feng and L. Froyen, Composites: Part A, 31, 385–390 (2000).

  21. I. Gheorghe and H. Rack, J. Mater. Sci. Technol., 18 (10), 1079–1084 (2002); DOI: https://doi.org/10.1179/026708302225005990.

    Article  ADS  Google Scholar 

  22. Y. Sun, Z. Wan, L. Hu, et al., Rare Metal Mater. Eng., 46, No. 8, 2080–2086 (2017).

    Google Scholar 

  23. J. Liu, Y. Su, Y. Xu, et al., Rare Metal Mater. Eng., 40, No. 5, 0753–0756 (2011).

    Google Scholar 

  24. E. Illekova, J.Gachon, A. Rogachev, et al., Thermochim. Acta, 469, 77–85 (2008).

    Article  Google Scholar 

  25. A. Školáková, J. Leitner, P. Salvetr, et al., Mater. Chem. Phys., 230, 122–130 (2019).

    Article  Google Scholar 

  26. I. Prigogine and D. Kondepudi, Modern Thermodynamics. From Heat Engines to Dissipative Structures [Russian translation], Mir, Moscow (2002).

  27. E. A. Nekrasov, V. K. Smolyakov, and Yu. M. Maximov, Comb., Explos., Shock Waves, 17, No. 5, 513–520 (1981).

  28. E. A. Nekrasov, Yu. M. Maximov, and A. P. Aldushin, Comb., Expl., Shock Waves, 16, No. 3, 342–347 (1980).

  29. O. B. Kovalev and V. A. Neronov, Comb., Explos., Shock Waves, 40, No. 2, 172–179 (2004).

  30. B. B. Khina, B. Formanek, and I. Solpan, Physica B: Cond. Matter., 355, Nos. 1–4, 14–31 (2005).

    Article  ADS  Google Scholar 

  31. B. S. Bokshtein, Diffusion in Metals [in Russian], Metallurgiya, Moscow (1978).

    Google Scholar 

  32. A. G. Knyazeva and Yu. P. Sharkeev, Key Eng. Mater., 712, 220–225 (2016); DOI: https://doi.org/10.4028/www.scientific.net/ KEM.712.220.

    Article  Google Scholar 

  33. M. A. Anisimov, Russ. Phys. J., 64, No. 4, 581–589 (2021).

    Article  Google Scholar 

  34. M. Anisimova, A. Knyazeva, and I. Sevostianov, Int. J. Eng. Sci., 153, 103307 (2020).

    Article  Google Scholar 

  35. Z. Erdélyi and G. Schmitz, Acta Mater., 60, 1807–1817 (2012).

    Article  ADS  Google Scholar 

  36. A. G. Knyazeva, Rev. Adv. Mater. Technol., 4, No. 1, 33–42 (2022); DOI: https://doi.org/10.17586/2687-0568-2022-4-1-33-42.

  37. A. G. Knyazeva, Introduction to Locally Equilibrium Thermodynamics of Physical and Chemical Transformations in Deformable Media [in Russian], Publishing House of Tomsk State University, Tomsk (1996).

    Google Scholar 

  38. M. Winnicki, L. Łatka, M. Jasiorski, and A. Baszczuk, Surf. Coat. Technol., 405, 126516 (2021); DOI: https://doi.org/10.1016/j.surfcoat.2020.126516.

  39. P. V. Trusov, A. I. Shveikin, N. S. Kondratyev, and A. Yu. Yants, Fizich. Mezomekh., 23, No. 6, 33–62 (2020); DOI: https://doi.org/10.24411/1683-805X-2020-16003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Anisimova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 3–10, November, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimova, M.A., Knyazeva, A.G. Features of Phase Formation in Al–TiO2 Powder Mixture Under Changing Temperature. Russ Phys J 65, 1795–1803 (2023). https://doi.org/10.1007/s11182-023-02833-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02833-3

Keywords

Navigation