Skip to main content
Log in

First-Principle Investigation of AlSi2P and GaGe2As Crystals

  • Published:
Russian Physics Journal Aims and scope

Equilibrium parameters of the crystal lattice are obtained by the methods of density functional theory. The electronic structure and vibrational properties of hypothetical AlSi2P and GaGe2As crystals, analogs of the superhard BC2N crystal, has been studied. The energy band structure, long-wave oscillation frequencies at point Г, elastic moduli, Poisson's ratio, and microhardness are calculated. The role of group IV elements is established and the contributions of the vibrations of individual atoms to the vibrational modes of the crystal are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Badzian, Mater. Res. Bull., 16, No. 11, 1385–1393 (1981).

    Article  Google Scholar 

  2. J. Bill, R. Riedel, and G. Passing, Z. Anorg. Allg. Chem., 610, No. 4, 83−90 (1992).

    Article  Google Scholar 

  3. J. Bill, M. Frieβ, and R. Riedel, Eur. J. Solid State Inorg. Chem., 29, No. 1, 195–212 (1992).

    Google Scholar 

  4. S. Nakano, M. Akaishi, T. Sasaki, and S. Yamaoka, Chem. Mater., 6, No. 12, 2246–2251 (1994).

    Article  Google Scholar 

  5. E. Knittle, R. B. Kaner, R. Jeanloz, and M. L. Cohen, Phys. Rev. B, 51, No. 1, 12149–12156 (1995).

    Article  ADS  Google Scholar 

  6. M. Hubacek and T. Sato, J. Solid State Chem., 114, No. 1, 258–264 (1995).

    Article  ADS  Google Scholar 

  7. T. Komatsu, M. Nomura, Y. Kakudate, and S. Fujiwara, J. Mater. Chem., 6, No. 11, 1799–1803 (1996).

    Article  Google Scholar 

  8. V. L. Solozhenko, D. Andrault, G. Fiquet, et al., Appl. Phys. Lett., 78, No. 10, 1385–1387 (2001).

    Article  ADS  Google Scholar 

  9. V. L. Solozhenko and E. Gregoryanz, Mater. Today, 8, No. 11, 44–51 (2005).

    Article  Google Scholar 

  10. Y. Zhao, D. W. He, L. L. Daemen, et al., J. Mater. Res., 17, No. 12, 3139–3145 (2002).

    Article  ADS  Google Scholar 

  11. V. L. Solozhenko, S. N. Dub, and N. V. Novikov, Diamond Relat. Mater., 10, No. 12, 2228–2231 (2001).

    Article  ADS  Google Scholar 

  12. A. R. Badzian, S. Appenheimer, T. Niemyski, et al., Proc. Int. Conf. Chem. Vap. Deposition, 3, No. 6, 747–753 (1972).

    Google Scholar 

  13. R. B. Kaner, J. Kouvetakis, C. E. Warble, et al., Mater. Res. Bull., 22, No. 3, 399–404 (1987).

    Article  Google Scholar 

  14. F. Saugnac, F. Teyssandier, and A. Marchand, J. Phys. IV, 2, No. C2, 673 (1991).

    Google Scholar 

  15. A. W. Moore, S. L. Strong, G. L. Doll, et al., J. Appl. Phys., 65, No. 12, 5109.1–5109.10 (1989).

  16. M. L. Kosinova, Yu. M. Rumyantsev, A. N., Golubenko et al., Inorg. Mater., 39, No. 4, 366–373 (2003).

  17. M. L. Kasinova, Yu. M. Rumyantsev, N. I. Fainer, et al., Nucl. Instrum. Methods Phys. Res. A, 470, No. 1–2, 253–257 (2001).

    Article  ADS  Google Scholar 

  18. C. Popov, K. Saito, B. Ivanov, et al., Thin Solid Films, 312, No. 1–2, 99–105 (1998).

    Article  ADS  Google Scholar 

  19. V. P. Filonenko, V. N. Khabashesku, et al., Inorg. Mater., 44, No. 4, 395–400 (2008).

    Article  Google Scholar 

  20. W. R. Matizamhuka, I. Sigalas, M. Herrmann, et al., Materials, 4, No. 12, 2061–2072 (2011).

    Article  ADS  Google Scholar 

  21. J. L. He, Y. J. Tian, D. L. Yu, et al., Chem. Phys. Lett., 340, No. 5–6, 431–436 (2001).

    Article  ADS  Google Scholar 

  22. V. P. Filonenko, V. N. Khabashesku, et al., Fiz. Tekh. Vysok. Davl., 18, No. 4, 129–137 (2008).

    Google Scholar 

  23. S. V. Kidalov, F. M. Shakhov, V. M. Davidenko, and V. A. Yashin, Tech. Phys. Lett., 37, No. 6, 247–249 (2011).https://doi.org/10.1134/S1063785011030266

    Article  ADS  Google Scholar 

  24. J. Sun, H. T. Wang, N. B. Ming, et al., Appl. Phys. Lett., 84, No. 22, 4544–4546 (2004).

    Article  ADS  Google Scholar 

  25. J. Sun, X-F. Zhou, G-R. Qian, et al., Appl. Phys. Lett., 89, No. 15, 151911 (2006).

    Article  ADS  Google Scholar 

  26. Y. Li, W. Fan, H. Sun, et al., J. Phys. Chem. C, 114, No. 6, 2783–2791 (2010).

    Article  Google Scholar 

  27. Yu. M. Basalaev and A. S. Poplavnoi, Zh. Struktur. Khim., 50, No. 6, 1232–1235 ( 2009).

    Google Scholar 

  28. Yu. M. Basalaev and A. S. Poplavnoi, Electronic Structure of Ternary Diamond-Like Compounds with Chalcopyrite Structure [in Russian], LLC “INT”, Kemerovo (2009).

  29. Yu. M. Basalaev and A. S. Poplavnoi, Chalcopyrite: Chemical Composition, Occurrence and Uses, ed. Deborah Cronin, Nova Science Publishers, Inc., N. Y., USA (2014).

  30. R. Dovesi, A. Erba, R. Orlando, et al., Comput. Mol. Sci., 8, No. 4, e1360 (2018).

    Article  Google Scholar 

  31. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, No. 18, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  32. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 13, No. 12, 5188–5192 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  33. W. Setyawan and S. Curtarolo, Comput. Mater. Sci., 49, No. 2, 299–312 (2010).

    Article  Google Scholar 

  34. Yu. M. Basalaev, M. Yu. Basalaeva, and A. B. Gordienko, Zh. Struktur. Khim., 62, No. 7, 1061–1071 (2021).

    Google Scholar 

  35. Yu. M. Basalaev and A. B. Gordienko, Zh. Struktur. Khim., 62, No. 6, 885–891 (2021).

    Google Scholar 

  36. Yu. M. Basalaev, O. G. Basalaeva, and A. V. Sidorova, Zh. Struktur. Khim., 61, No. 3, 361–367 (2020).

    Google Scholar 

  37. Yu. M. Basalaev, M. Yu. Basalaeva, E. B. Duginova, and S. A. Marinova, Zh. Struktur. Khim., 61, No. 12, 1945–1950 (2020).

    Google Scholar 

  38. Yu. M. Basalaev and M. Yu. Basalaeva, Zh. Struktur. Khim., 61, No. 7, 1069–1078 (2020).

    Google Scholar 

  39. Y. Tian, B. Xu, and Z. Zhao, Int. J. Refract. Met. Hard Mater., 33, 93 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Basalaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 120–126, October, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basalaev, Y.M., Basalaeva, O.G. First-Principle Investigation of AlSi2P and GaGe2As Crystals. Russ Phys J 65, 1738–1745 (2023). https://doi.org/10.1007/s11182-023-02824-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02824-4

Keywords

Navigation