Skip to main content
Log in

Autowave Description of the Lüders and Portevin–Le Chatelier Phenomena

  • Published:
Russian Physics Journal Aims and scope

The kinetics of Chernov–Lüders and Portevin–Le Chatelier deformation processes at the yield plateau in an aluminum-magnesium alloy is analyzed. It is established that the deformation is localized in moving deformation fronts. In general, the movement of the fronts proceeds discretely and only in the phase of abrupt unloading of the sample. Continuous movement of deformation fronts is possible if the rate of recovery of the operating stresses applied by test device is greater than or equal to the rate of stress decline controlled by internal processes at a lower structural-scale level. The kinetics of the motion of deformation fronts, both in the Chernov–Lüders and Portevin–Le Chatelier processes, can be described within the autowave concept of plastic flow, and the fronts themselves represent excitation autowaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Seeger and W. Frank, Non-Linear Phenomena in Materials Science, Trans Tech Publications, New York (1988).

    Google Scholar 

  2. A. Scott, Nonlinear Science. Emergence and Dynamics of Coherent Structures, Oxford University Press, Oxford (2003).

    MATH  Google Scholar 

  3. L. B. Zuev, S. A. Barannikova, V. I. Danilov, and V. V. Gorbatenko, Prog. Phys. Met., 22, 3–57 (2021).

    Article  Google Scholar 

  4. E. O. Hall, Yield Point Phenomena in Metals and Alloys, Plenum Press, New York (1970).

    Book  Google Scholar 

  5. L. J. Cuddy and W. C. Leslie, Acta Met., 20, 1157–1167 (1972).

    Article  Google Scholar 

  6. D. Lloyd, S. A. Court, and K. M. Gatenby, Mater. Sci. Technol., 13, 660–666 (1997).

    Article  ADS  Google Scholar 

  7. A. A. Shibkov, A. E. Zolotov, D. V. Mikhailik, et al., Deformation and Fracture of Materials, 8, 23–30 (2009).

    Google Scholar 

  8. M. A. Sutton, Digital Image Correlation for Shape and Deformation Measurements, Springer Handbooks, Boston (2008).

    Book  Google Scholar 

  9. V. V. Gorbatenko, V. I. Danilov, and L. B. Zuev, Tech. Phys., 62, No. 3, 395–400 (2017).

    Article  Google Scholar 

  10. H. B. Sun, F. Yoshida, M. Ohmori, and X. Ma, Mater. Lett., 57, No. 29, 4535–4539 (2003).

    Article  Google Scholar 

  11. B. Tian, Mat. Sci. Engin. A, 349, 272–278 (2003).

    Article  Google Scholar 

  12. F. Chmelik, F. B. Klose, H. Dierke, et al., Mat. Sci. Engin. A, 462, 53–60 (2007)

    Article  Google Scholar 

  13. L. P. Kubin and Yu. Estrin, Acta Met., 35, No, 697–707 (1990).

  14. G. A. Malygin, Phys. Solid State, 34, No. 8, 2356–2366 (1992).

    Google Scholar 

  15. L. B. Zuev and V. I. Danilov, Phys. Solid State, 64, No. 8, 1006–1011 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Danilov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, V.I., Zuev, L.B., Gorbatenko, V.V. et al. Autowave Description of the Lüders and Portevin–Le Chatelier Phenomena. Russ Phys J 65, 1411–1418 (2022). https://doi.org/10.1007/s11182-023-02784-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02784-9

Keywords

Navigation