Skip to main content
Log in

Strain Rate Effect on Dislocation Structure in Dispersion-Hardened Alloy with Incoherent Nanoparticles

  • Published:
Russian Physics Journal Aims and scope

The paper studies the influence of strain rate on the density of the dislocation system components in dispersion-hardened materials having different scale parameters of the strengthening phase in a wide temperature range. According to mathematical simulation, the plastic shear rate of heterophased alloys with incoherent nanosized particles, affects the formation of dipole dislocation structures and, consequently, the material hardening. At high temperatures, the formation of dipoles does not occur in the dislocation structure of the material with the smallest particles at any strain rate. It is shown that during plastic strain, the density of shear dislocations is higher than that of dislocations in prismatic loops at all strain temperatures and rates in materials with strengthening particles of different size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Luts and I. A. Galochkina, Aluminum Composite Alloys of the Future [in Russian], Samara (2013).

  2. V. Arnhold and K. Hummert, New Materials by Mechanical Alloying Techniques, E. Arzt and L. Schultz, eds, DGM Informationsgeselischaft Verlag, Oberursel (1989).

  3. J. H. Weber and R. D. Schelleng, Dispersion Strengthened Aluminum Alloys, Y.-W. Kim and W. M. Griffith eds, TMS, Warrendale (1988).

  4. T. A. Kovalevskaya and O. I. Daneyko, Bull. Russ. Acad. Sci. Phys., 85, No. 7, 776–781 (2021).

    Article  Google Scholar 

  5. M. A. Bol'shanina, Izvestiya RAN. Ser. Fizich., 14, No. 2, 223–231 (1950).

    Google Scholar 

  6. M. F. Ashby, Philos. Mag., 14, No. 132, 1157–1178 (1966).

    Article  ADS  Google Scholar 

  7. R. Ebeling and M. F. Ashby, Philos. Mag., 13, No. 124, 805–834 (1966).

    Article  ADS  Google Scholar 

  8. F. J. Humphreys and P. B. Hirsch, Proc. Royal Soc. London A, 318, No. 1532, 73–92 (1970).

    ADS  Google Scholar 

  9. P. B. Hirsch and F. J. Hymphreys, Physics of Strength and Plasticity [Russian translation], Metallurgiya, Moscow (1972), pp. 158–186.

    Google Scholar 

  10. E. Orowan, in: Proc. Symp. on Internal Stresses in Metals and Alloys, Institute of Metals, London (1948), pp. 451−454.

  11. M. F. Ashby, Physics of Strength and Plasticity [Russian translation], Metallurgiya, Moscow (1972), pp. 88–108.

    Google Scholar 

  12. P. M. Hazzledine and P. B. Hirsch, Philos. Mag., 30, No. 6, 1331–1351 (1974).

    Article  ADS  Google Scholar 

  13. A. T. Stewart and J. W. Martin, Acta Met., 23, 1–7 (1975).

    Article  Google Scholar 

  14. F. J. Humphreys and P. B., Hirsch, Philos. Mag., 34, 373–399 (1978).

  15. O. I. Daneyko and T. A. Kovalevskaya, Russ. Phys. J., 61, No. 9, 1687–1694 (2019).

    Article  Google Scholar 

  16. O. I. Daneyko, T. A. Kovalevskaya, and O. V. Matvienko, Russ. Phys. J., 61, No. 7, 1229–1235 (2018).

    Article  Google Scholar 

  17. T. A. Kovalevskaya and O. I. Daneyko, Russ. Phys. J., 62, No. 12, 2247–2254 (2020).

    Article  Google Scholar 

  18. L. N. Larikov and Yu. F. Yurchenko, Thermal Properties of Metals and Alloys [in Russian], Naukova dumka, Kiev (1985).

  19. M. H. Yoo, Philos. Mag., 40, No. 2, 193–211 (1979).

    Article  ADS  Google Scholar 

  20. L. E. Popov, S. N. Kolupaeva, and O. A. Sergeeva, Mathematical Simulation of Systems and Processes [in Russian], No. 5, 93–104 (1997).

    Google Scholar 

  21. O. I. Daneyko, T. A. Kovalevskaya, T. A. Shalygina, and V. G. Simonenko, Russ. Phys. J., 64, No. 10, 1893–1898 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Daneyko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 115–123, August, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneyko, O.I., Kovalevskaya, T.A. Strain Rate Effect on Dislocation Structure in Dispersion-Hardened Alloy with Incoherent Nanoparticles. Russ Phys J 65, 1358–1365 (2022). https://doi.org/10.1007/s11182-023-02774-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02774-x

Keywords

Navigation