Skip to main content
Log in

Mathematical Modeling of Fragmentation Under Plastic Deformation in Alloys with the L12 Structure

  • Published:
Russian Physics Journal Aims and scope

Within the framework of a mathematical model of dislocation kinetics, the processes of deformation-induced formation of a fragmented substructure in alloys with the L12-superstructure with high and low energies of antiphase boundaries have been studied. The description of the equations of the mathematical model is given. The dependences of the average sizes of fragments (subgrains) on the degree of strain, the density of misorientation boundaries, stress-strain curves, and the dependences of the scalar density of dislocations on the degree of strain are calculated. A verification comparison of the obtained theoretical dependences with experimental data was carried out, which showed a good agreement. The model shows that the mechanisms of self-locking of superdislocations hinder the processes of deformation fragmentation in alloys with an L12-superstructure at moderate deformation temperatures. The paper analyzes the influence of the energy value of antiphase boundaries on the processes of deformation fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials. Preparation, Structure, and Properties [in Russian], IKTs “Akademkniga”, Moscow (2007).

  2. F. Z. Utyashev, G. I. Raab, and V. A. Valitov, Deformation Nanostructuring of Metals and Alloys [in Russian], Naukoemk. Tekholog., St. Petersburg (2020).

  3. N. I. Noskova and R. R. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys [in Russian], UrO RAN, Yekaterinburg (2003).

  4. R. Z. Valiev and T. G. Langdon, Adv. Eng. Mater., 12, 677–691 (2010).

    Article  Google Scholar 

  5. A. M. Glezer, E. V. Kozlov, N. A. Koneva, et al., Plastic Deformation of Nanostructured Materials, CRC Press, Taylor and Francis Group, London, New York (2017).

    Book  Google Scholar 

  6. G. Faraji, H. S. Kim, and H. Kashi, Severe Plastic Deformation: Methods, Processing and Properties, Elsevier (2018).

    Book  Google Scholar 

  7. A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci., 53, 893–979 (2008).

    Article  Google Scholar 

  8. N. S. Stoloff, Int. Metals Rev., 29, No. 3, 123–134 (1984).

    Google Scholar 

  9. E. N. Kablov, I. L. Svetlov, and N. V. Petrushin, Materialoved., No. 4, 32–38 (1997).

  10. E. N. Kablov, I. L. Svetlov, and N. V. Petrushin, Materialoved., No. 5, 14–17 (1997).

  11. B. H. Kear and H. G.B. Wilsdorf, Trans. Metall. Soc. AIME, 224, No. 2, 382–386 (1962).

    Google Scholar 

  12. P. A. Flinn, Trans. Metall. Soc. AIME, 218, 145–154 (1960).

    Google Scholar 

  13. V. A. Starenchenko, Yu. A. Abzaev, and L. G. Chernykh, Metallofiz., 2, No. 9, 22–28 (1987).

    Google Scholar 

  14. V. A. Starenchenko, S. V. Starenchenko, S. N. Kolupaeva, and O. D. Pantyukhova, Russ. Phys. J., 43, No. 1, 61–65 (2000).

    Article  Google Scholar 

  15. V. A. Starenchenko, T. A. Shalygina, I. I. Shalygin, and L. E. Popov, Fiz. Metall. Metalloved., No. 10, 16–23 (1991).

  16. A. M. Kosevich, Dislocations in the Theory of Elasticity [in Russian], Naukova Dumka, Kyiv (1978).

    Google Scholar 

  17. V. A. Starenchenko, Yu. V. Solov’eva, S. V. Starenchenko, and T. A. Kovalevskaya, Thermal and Strain Hardening of Single Crystals of Alloys with L12 Superstructure [in Russian], Izd. NTL, Tomsk (2006).

  18. L. A. Teplyakova, N. A. Koneva, D. V. Lychagin, et al., Russ. Phys. J., 31, No. 2, 99–103 (1988).

    Google Scholar 

  19. L. A. Teplyakova, N. A. Koneva, T. S. Kunitsyna, et al., Evolution of the Structure and Properties of Metallic Materials [in Russian], ed. A. I. Potekayev, Izd. NTL, Tomsk (2007).

  20. C. Rentenberger and H. P. Karnthaler, Acta Mater., 53, 3031–3040 (2005).

    Article  ADS  Google Scholar 

  21. Octav Ciuca, Koichi Tsuchiya, Yoshihiko Yokoyama, et al., Mater. Trans., 50, No. 5, 1123–1127 (2009).

    Article  Google Scholar 

  22. Yu. V. Solov’eva, Ya. D. Lipatnikova, S. V. Starenchenko, et al., Russ. Phys. J., 60, No. 5, 830–840 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu.V. Solov’eva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii Fizika No. 8, Pp. 106–114, August 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solov’eva, Y., Pantyukhova, O.D. & Starenchenko, V.A. Mathematical Modeling of Fragmentation Under Plastic Deformation in Alloys with the L12 Structure. Russ Phys J 65, 1348–1357 (2022). https://doi.org/10.1007/s11182-023-02773-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02773-y

Keywords

Navigation