Skip to main content
Log in

Structure Effect on the Diffusion and Accumulation of Hydrogen in the Zr–1Nb Alloy

  • Published:
Russian Physics Journal Aims and scope

Comparative studies of the diffusion and accumulation of hydrogen in the Zr–1 wt.% Nb alloy in the finegrained and ultrafine-grained states during electrolytic saturation were carried out by the membrane method. The formation of an ultrafine-grained structure is established to lead to a decrease in the effective diffusion coefficient and the rate of hydrogen accumulation in the bulk of the alloy. The influence of the dislocation density and the length of grain boundaries on the effective diffusion coefficient of hydrogen and the ability of the alloy to accumulate hydrogen in the bulk are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-M. Tung, T.-C. Chen, and C.-C. Tseng, Mater. Sci. Eng. A, 659, 172–178 (2016).

    Article  Google Scholar 

  2. Y. Zhang, H. Qi, and X. Song, J. Nucl. Mater., 554, 153082 (2021).

    Article  Google Scholar 

  3. H. Lee, K.-M. Kim, J.-S. Kim, and Y.-S. Kim, Nucl. Eng. Technol., 52 (2), 352–359 (2020).

    Article  Google Scholar 

  4. E. N. Stepanova, G. P. Grabovetskaya, and A. S. Dubrovskaya, Int. J. Hydrogen Energy, 42(35), 22633–22640 (2017).

    Article  Google Scholar 

  5. B. A. Kolachev, Hydrogen Embrittlement of Metals [in Russian], Metallurgiya, Moscow (1985)

    Google Scholar 

  6. Yu. P. Sharkeev, E. V. Legostaeva, V. P. Vavilov, et al., Russ. Phys. J., 62, No. 8, 1349–1356 (2019).

    Article  Google Scholar 

  7. E. Stepanova, G. Grabovetskaya, M. Syrtanov, and I. Mishin, Metals, 10 (5), 592 (2020).

    Article  Google Scholar 

  8. P. V. Geld, R. F. Ryabov, and E. S. Kodes, Hydrogen and Metal Structure Imperfections [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  9. A. Turnbull, Gaseous Hydrog. Embrittlement Mater. Energy Technol., Elsevier (2012).

    Google Scholar 

  10. N. A. Kulabukhova, G. M. Poletaev, M. D. Starostenkov, et al., Russ. Phys. J., 54, No. 12, 1394–1400 (2012).

    Article  Google Scholar 

  11. D. G. Morris, Mechanical Behavior of Nanostructured Materials, Trans. Tech. Publication ltd, Switherland (1998).

    Google Scholar 

  12. R. Z. Valiev, Y. Estrin, Z. Horita, et al., Mater. Res. Lett., 4, 1–21 (2016).

    Article  Google Scholar 

  13. E. N. Stepanova, G. P. Grabovetskaya, I. P. Mishin, and D.Yu. Bulynko, Mater. Today Proc., No. 2, 365–369 (2015).

  14. A. Zuttel, Mater. Today, No. 9, 24–33 (2003).

    Google Scholar 

  15. M. J. Zehetbauer, G. Steiner, E. Schafler, et al., Mater. Sci. Forum, 503–504, 57–64 (2006).

    Article  Google Scholar 

  16. A. I. Lotkov, A. Baturin, V. N. Grishkov, and V. I. Kopylov, Phys. Mesomech., 10 (3−4),179–189 (2007).

    Article  Google Scholar 

  17. M. Legros, G. Dehm, E. Arzt, and T. J. Balk, Science, 319 (5870), 1646–1649 (2008).

    Article  ADS  Google Scholar 

  18. Hideaki Iwaoka, Makoto Arita, and Zenji Horita, Acta Mater., 107, 168–177 (2016).

    Article  ADS  Google Scholar 

  19. A. M. Brass and A. Chanfreau, Acta Mater., 44, 3823–3831 (1996).

    Article  ADS  Google Scholar 

  20. S. A. Saltykov, Stereometric Metallography [in Russian], Metallurgiya, Moscow (1970).

    Google Scholar 

  21. G. K. Williamson and R. E. Smallman, Phil. Mag., 1, No. 1, 34–46 (1956).

    Article  ADS  Google Scholar 

  22. P. M. Sargent and M. F. Ashby, Scripta Metall., 16, No. 1, 1415–1422 (1982).

    Article  Google Scholar 

  23. P. S. Chowdhury, P. Mukherjee, N. Gayathri, et al., Bull. Mater. Sci., 34, No. 3, 507–513 (2011).

    Article  Google Scholar 

  24. V. P, Baranov, Sovrem. Probl. Nauki I Obrazov., No. 1, 38–41 (2007).

  25. I. S. Petriev, I. S. Lutsenko, P. D. Pushankina, et al., Russ. Phys. J., 65, No. 2, 312–316 (2022).

    Article  Google Scholar 

  26. N. N. Nikitenkov, A. M. Hashhash, Yu. I. Tyurin, et al., J. Surf. Investigat. X-ray, Synchrotron and Neutron Techniques, 4, No. 3, 534–537 (2010).

  27. V. N. Kudiiarov and A. M. Lider, Fundam. Issled., No. 10, 3466–3471 (2013).

  28. S. V. Ivanova, Materialoved., No. 7, 42–49 (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Grabovetskaya.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii Fizika No. 8, Pp. 98–105, August 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabovetskaya, G.P., Stepanova, E.N., Nikitenkov, N.N. et al. Structure Effect on the Diffusion and Accumulation of Hydrogen in the Zr–1Nb Alloy. Russ Phys J 65, 1340–1347 (2022). https://doi.org/10.1007/s11182-023-02772-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02772-z

Keywords

Navigation