Skip to main content
Log in

The Physical Foundations of 3D-Printing Technology. Molecular Dynamics Simulation

  • Published:
Russian Physics Journal Aims and scope

Using the molecular dynamics (MD) approach, a nonequilibrium phase transition – nanosystem melting – initiated by a volumetric heat source is studied. It is shown that at a critical heat source power the melting phase transition occurs under nonequilibrium conditions of significant local overheating and may be accompanied by the formation of a locally unstable state in the microcrystal and the complex dynamics: the nucleation of phase transformation fronts both on the surface and in the bulk of the microcrystal. The nanosystem crystallization obtained by modeling the melting is also studied, with the cooling simulated by touching the cold surface. The study provides an insight into the physical processes taking place in nanosystems during their melting and crystallization, which allows formulating the requirements to the heat source parameters depending on the layer thickness built by 3-D printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Gibson, D. Rosen, and B. Stuker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping and Direct Digital Manufacturing, Springer, New York (2015).

  2. Additive Manufacturing for the Aerospace Industry (Eds. F. Fores and R. Boyer), Elsevier, Cambridge (2019).

  3. K. S. Osipovich, E. G. Astafurova, A. Chumaevskii, et al., J. Mater. Sci., 9258 (2020).

  4. G. A. Pribytkov, M. N. Khramogin, and V. V. Korzhova, Zh. Fizich. Mezomekh., 9, No. S1, 185 (2006).

    Google Scholar 

  5. A. I. Lotkov, S. G. Psahie, A. G. Knyazeva, et al., Surface Nanoengineering. Formation of Non-equilibrium States in Surface Layers of Materials by Electron-Ion Plasma Technologies [in Russian], SB RAS Publ., Novosibirsk (2008).

  6. S. N. Meisner, E. V. Yakovlev, V. O. Semin, et al., Appl. Surf. Sci., 437, 217 (2018).

    Article  ADS  Google Scholar 

  7. J. W. Cahn and J. E. Hilliard, J. Chem. Phys., 28, 258 (1958).

    Article  ADS  Google Scholar 

  8. Alain Karma and Wouter-Jan Rappel, Phys. Rev. E, 53, Iss. 4, 3017 (1996).

  9. Ji-Qin Li, Tai-Hsi Fan, Takashi Taniguchi, Bi Zhang, Int. J. Heat and Mass Transfer, 117, 412 (2018).

    Article  Google Scholar 

  10. V.Yu. Khomich and V. A. Shmakov, Physics-Uspekhi., 58, 455 (2015).

    Article  ADS  Google Scholar 

  11. S. P. Zhvavyi, Tech. Physics, 70, Iss. 8, 58 (2000).

  12. A. R. Ubbelohde, Molten State of Matter: Melting and Crystal Structure, John Wiley & Sons Ltd. (1978).

  13. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics.Volume 5. Statistical Physics (3rd edition), Butterworth-Heinemann (1975).

  14. H. Haken, Synergetik. Springer Verlag, Berlin, Heidelberg, New York (1982).

    Book  MATH  Google Scholar 

  15. E. E. Slayadnikov, I. Yu. Turchanovskii, and P. P. Kaminskii, Russ. Phys. J., 63, No. 4, 699 (2020).

    Article  Google Scholar 

  16. A. R. Shugurov, A. V. Panin, A. I. Dmitriev, et al., Phys. Mesomech., 24, 185 (2021).

    Article  Google Scholar 

  17. A. N. Lagarkov and V. M. Sergeev, Physics: Uspekhi, 125, 409 (1978).

  18. V. M. Samsonov, S. S. Kharechkin, S. Gafner, et al., Crystallogr. Rep., 54, Iss. 3, 526 (2009).

  19. Q. Chen, Y. Zhou, Z. Tian, et al., Mod. Phys. Lett. B, 33, Iss. 31, 1950392 (2019).

  20. S. Yu. Korostelev, E. E. Slyadnikov, and I.Yu. Turchanovskii, AIP Conf. Proc., 1783, 020105 (2016).

    Google Scholar 

  21. S. Yu. Korostelev, E. E. Slyadnikov, and I.Yu. Turchanovskii, AIP Conf. Proc., 2310, 020159 (2010).

    Google Scholar 

  22. A. P. Thompson, H. M. Aktulga, R. Berger, et al., Comput. Phys. Commun., 271, 108171 (2022).

    Article  Google Scholar 

  23. Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, et al., Phys. Rev. B, 63, 224106 (2001).

    Article  ADS  Google Scholar 

  24. H. J.C. Berendsen, P. M. Postma, W. F. van Gunsteren, et al., J. Chem. Phys., 81, 3684 (1984).

    Article  ADS  Google Scholar 

  25. J. A. Sanchez, M. P. Menguc, et al., Phys. Rev. B, 76, 224104 (2007).

    Article  ADS  Google Scholar 

  26. W. J. Briels and H. L. Tepper, Phys. Rev. Lett., 79, 5074 (1997).

    Article  ADS  Google Scholar 

  27. V. I. Mazhukin and A. V. Shapranov, Preprints of the Keldysh Institute of Applied Mathematics, No. 31, 27 (2012).

    Google Scholar 

  28. L. Deng, X. Zhang, L. Wang, et al., Comput. Mater. Sci., 143, 195 (2018).

    Article  Google Scholar 

  29. E. U. Bañuelos, C. C. Aburto, A. M. Arce, J. Chem. Phys., 144, 094504 (2016).

    Article  ADS  Google Scholar 

  30. A. Stukowski, Modell. Simulat. Mater. Sci. Eng., 18, 015012 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Korostelev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 49–57, August, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korostelev, S.Y., Slyadnikov, E.E. & Turchanovsky, I.Y. The Physical Foundations of 3D-Printing Technology. Molecular Dynamics Simulation. Russ Phys J 65, 1290–1298 (2022). https://doi.org/10.1007/s11182-023-02764-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02764-z

Keywords

Navigation