Skip to main content
Log in

The Dynamics of a Controlled Streamer Discharge at Moderate Air Pressures

  • Published:
Russian Physics Journal Aims and scope

Relying on the analysis of the streamer discharge research data, a classification of the streamer discharges into free and controlled events is proposed. Controlled (linear and branched) streamers are formed in air at the pressures from 30 to 150 Torr. Using the method of high-speed photography, the propagation velocities and the glow structure of the ionization waves are obtained at their start, during deceleration, and in the branching point. It is found out that the ionization wave glow consists of two parts – the principal wave and precursor glows. It is shown that the precursor glow is much less intensive that that of the principal wave and contains mainly the 2+ N2 and 1 N2+ bands. This finding and the fact that the experiment in this study has been conducted at moderate air pressures provide an explanation why this glow was not observed earlier. The data obtained can be useful for designing theoretical test models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Raether Electron Avalanches and Breakdown in Gases, Butterworth, London (1964).

  2. L. B. Loeb and J. M. Meek, The Mechanism of Electric Spark, Stanford Univ. Press (1941).

    Google Scholar 

  3. E. D. Lozanskii, Physics–Uspekhi, 117, Iss. 3, 493 (1975).

  4. M. I. Dyakonov and V. Yu. Kachorovskii, Sov. Phys. JETP, 68, 1070 (1989).

    ADS  Google Scholar 

  5. V. Yu. Kachorovskii, Sov. Phys. Tech. Phys., 34, 844 (1989).

    Google Scholar 

  6. A. A. Kulikovsky, J. Phys. D: Appl. Phys., 30 (3), 441 (1997).

    Article  ADS  Google Scholar 

  7. Yu. P. Raizer, Gas Discharge Physics, Springer-Verlag, Berlin, Heidelberg (1991).

    Book  Google Scholar 

  8. N. Yu. Babaeva and G. V. Naidis, IEEE Trans. Plasma Sci., 26(1), 41 (1998).

  9. O. A. Sinkevich, High Temperature, 41:5, 609 (2003).

  10. S. Nijdam, F. M.J. H. van de Wetering, R. Blanc, et al., J. Phys. D: Appl. Phys., 43(14), 145204 (2010).

    Article  ADS  Google Scholar 

  11. V. R. Soloviev and V. M. Krivtsov, Plasma Physics Reports, 40(1) (2014).

    Article  Google Scholar 

  12. E. A. Sosnin, N. Yu. Babaeva, A. V. Kozyrev, et al., Physics–Uspekhi, 64, 191 (2021).

  13. V. S. Skakun, V. A. Panarin, D. S. Pechenitsyn, et al., Russ. Phys. J., 59, No. 5, 707 (2016).

    Article  Google Scholar 

  14. E. A. Sosnin,, V. A. Panarin,, V. S. Skakun, et al., Russ. Phys. J., 62, No. 7, 1289 (2019).

    Article  Google Scholar 

  15. V. S. Kuznetsov, E. A. Sosnin, V. A. Panarin, et al., Russ. Phys. J., 62, No. 6, 992 (2019).

    Article  Google Scholar 

  16. A. A. Kulikovsky, J. Phys. D: Appl. Phys., 33, No.12, 1514 (2000).

    Article  ADS  Google Scholar 

  17. X. Lu, G. V. Naidis, M. Laroussi, and K. Ostrikov, Phys. Rep., 540(3), 123 (2014).

    Article  ADS  Google Scholar 

  18. S. Nijdam, E. Takahashi, J. Teunissen, and U. Ebert, New J. Phys., 16(10), 103038 (2014).

    Article  ADS  Google Scholar 

  19. D. Zou, X. Cao, X. Lu, and K. Ostrikov, Phys. Plasmas, 22, 103517 (2015).

    Article  ADS  Google Scholar 

  20. J. Winter, R. Brandenburg, and K.-D. Weltmann, Plasma Sources Sci. Technol., 24, No. 10, 064001 (2015).

    Article  ADS  Google Scholar 

  21. E. A. Sosnin, V. F. Tarasenko, V. A. Panarin, and V. S. Skakun, Horizons in World Physics, 292, 5−51 (Ed. A. Reimer) NOVA Science (2017).

  22. X.-P. Lu, D.-W. Liu, Y.-B. Xian, et al., Phys. Plasmas, 28, 100501 (2021).

    Article  ADS  Google Scholar 

  23. X. Lu, G. V. Naidis, M. Laroussi, et al., Phys. Rep., 630, No. 4, 1 (2016).

    ADS  MathSciNet  Google Scholar 

  24. L. Lin and Q. Wang, Plasma Chem. Plasma Proc., 35, No. 6, 925 (2015).

    Article  Google Scholar 

  25. S. Nijdam, J. Teunissen, and U. Ebert, Plasma Sources Sci. Technol., 29, 103001 (2020).

    Article  ADS  Google Scholar 

  26. V. S. Kuznetsov, E. Kh. Baksht, V. A. Panarin, et al., Proc. SPIE (XV International Conference on Pulsed Lasers and Laser Applications (2 December 2021)), 12086, 1208613 (2021).

  27. E. A. Sosnin, G. V. Naidis, V. F. Tarasenko, et al., Phys. Plasmas, 25, Iss. 8, 083513 (2018).

  28. A. S. Novikov, Structural Analysis of Science: Problems. Explorations. Discoveries [in Russian], LENAND, Moscow (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Sosnin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 119–126, July, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosnin, E.A., Panarin, V.A., Skakun, V.S. et al. The Dynamics of a Controlled Streamer Discharge at Moderate Air Pressures. Russ Phys J 65, 1194–1201 (2022). https://doi.org/10.1007/s11182-022-02750-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02750-x

Keywords

Navigation