Skip to main content
Log in

Methods for Estimating Plasma Density in a Large-volume Hollow Anode

  • PLASMA PHYSICS
  • Published:
Russian Physics Journal Aims and scope

The results of investigation of a low-pressure glow discharge with a hollow cathode and a large-volume hollow anode in argon and nitrogen are presented. The data on plasma density and electron temperature are obtained. A model is proposed, which describes the mechanisms of plasma sustainment in a hollow anode. The model includes the non-uniformity of plasma density distribution in the anode cavity. The estimations of the plasma parameters are made. The model is in a good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. D. Korolev and N. N. Koval, J. Phys. D: Appl. Phys., 51, No. 32, 323001 (2018).

    Article  Google Scholar 

  2. Y. S. Akishev, V. B. Karal’nik, A. V. Petryakov, et al., Plasma Phys. Rep., 42, No. 1, 14 (2016).

    Article  ADS  Google Scholar 

  3. N. V. Gavrilov and A. S. Kamenetskikh, Rev. Sci. Instrum., 75, 1875 (2004).

    Article  ADS  Google Scholar 

  4. E. Dewald, K. Frank, D. H.H. Hoffman, et al., IEEE Trans. Plasma Sci., 25, 272 (1997).

    Article  ADS  Google Scholar 

  5. G. Y. Yushkov, Rev. Sci. Instrum., 75, 1582 (2004).

    Article  ADS  Google Scholar 

  6. E. M. Oks, A. V. Vizir, and G. Y. Yushkov, Rev. Sci. Instrum., 69, 853 (1998).

    Article  ADS  Google Scholar 

  7. K. Bergmann, J. Vieker, and A. Wezyk, J. Appl. Phys., 120, No. 14, 143302 (2016).

    Article  ADS  Google Scholar 

  8. V. M. Borisov, A. V. Eltsov, A. S. Ivanov, et al., J. Phys. D: Appl. Phys., 37, 3254 (2004).

    Article  ADS  Google Scholar 

  9. O. Rosier, R. Apetz, K. Bergmann, et al., IEEE Trans. Plasma Sci., 32, 240 (2004).

    Article  ADS  Google Scholar 

  10. R. P. Lamba, V. Pathania, B. L. Meena, et al., Rev. Sci. Instrum., 86, No. 10, 103508 (2015).

    Article  ADS  Google Scholar 

  11. J. Q. Yan, S. K. Shen, Y. A. Wang, et al., Rev. Sci. Instrum., 89, No. 6, 065102 (2018).

    Article  ADS  Google Scholar 

  12. J. Zhang and X. Liu, IEEE Trans. Dielectr. Electr. Insul., 24, No. 4, 2050 (2017).

    Article  Google Scholar 

  13. K. Frank and J. Christiansen, IEEE Trans. Plasma Sci., 17, No. 5, 748 (1989).

    Article  ADS  Google Scholar 

  14. K. Frank, E. Boggasch, J. Christiansen, et al., IEEE Trans. Plasma Sci., 16, No. 2, 317 (1988).

    Article  ADS  Google Scholar 

  15. T. Mehr, H. Arentz, P. Bickel, et al., IEEE Trans. Plasma Sci., 23, No. 3, 324 (1995).

    Article  ADS  Google Scholar 

  16. K. Frank, E. Dewald, C. Bickes, et al., IEEE Trans. Plasma Sci., 27, No. 4, 1008 (1999).

    Article  ADS  Google Scholar 

  17. N. V. Landl, Y. D. Korolev, V. G. Geyman, and O. B. Frants, Russ. Phys. J., 60, No. 8, 1277 (2017).

    Article  Google Scholar 

  18. N. V. Landl, Y. D. Korolev, V. G. Geyman, et al., Russ. Phys. J., 60, No. 8, 1269 (2017).

    Article  Google Scholar 

  19. N. P. Kondrat’eva, N. N. Koval, Y. D. Korolev, and P. M. Schanin, J. Phys. D: Appl. Phys., 32, 699 (1999).

  20. Yu. F. Ivanov, I. V. Lopatin, E. A. Petrikova, et al., Russ. Phys. J., 62, No. 11, 2106 (2020).

    Article  Google Scholar 

  21. I. V. Lopatin, Y. H. Akhmadeev, and N. N. Koval, Rev. Sci. Instrum., 86, 103301 (2015).

    Article  ADS  Google Scholar 

  22. N. N. Koval, Y. F. Ivanov, I. V. Lopatin, et al., Russ. J. Gen. Chem., 85, 1326 (2015).

    Article  Google Scholar 

  23. N. N. Koval, A. I. Ryabchikov, D. O. Sivin, et al., Surf. Coat. Technol., 340, 152 (2018).

    Article  Google Scholar 

  24. Y. H. Akhmadeev, V. V. Denisov, N. N. Koval, et al., Plasma Phys. Rep., 43, No. 1, 67 (2017).

    Article  ADS  Google Scholar 

  25. V. N. Devyatkov and N. N. Koval, Russ. Phys. J., 60, No. 9, 1509 (2018).

    Article  Google Scholar 

  26. O. V. Krysina, N. N. Koval, I. V. Lopatin, et al., J. Phys.: Conf. Ser., 669, 012032 (2016).

    Google Scholar 

  27. A. A. Grishkov, Y. D. Korolev, and V. A. Shklyaev, Phys. Plasmas, 27, No. 10, 103504 (2020).

    Article  ADS  Google Scholar 

  28. N. V. Landl, Y. D. Korolev, V. G. Geyman, et al., Russ. Phys. J., 62, No. 11, 2024 (2020).]

    Article  Google Scholar 

  29. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Plasma Phys. Rep., 42, No. 8, 799 (2016).

    Article  ADS  Google Scholar 

  30. N. V. Landl, Y. D. Korolev, I. V. Lopatin, et al., Russ. Phys. J., 63, No. 10, 1766 (2021).

    Article  Google Scholar 

  31. A. S. Metel, S. N. Grigoriev, Y. A. Melnik, and V. V. Panin, Plasma Phys. Rep., 35, No. 12, 1058 (2009).

    Article  ADS  Google Scholar 

  32. Y. P. Raizer, Gas Discharge Physics, Springer, Berlin, Heidelberg (1991).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Landl.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 112–118, July, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landl, N.V., Korolev, Y.D., Kozyrev, A.V. et al. Methods for Estimating Plasma Density in a Large-volume Hollow Anode. Russ Phys J 65, 1186–1193 (2022). https://doi.org/10.1007/s11182-022-02749-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02749-4

Keywords

Navigation