Skip to main content
Log in

Structure and Phase Composition of Natural Magnesite in 1173–6500 K Temperature Range

  • Published:
Russian Physics Journal Aims and scope

The paper presents research results of the thermal effect on the structure, phase composition, and morphology of natural magnesite (MgCO3) from the Savinsky deposit (Irkutsk region) used as a raw material. Two types of thermal treatment are applied to test specimens, namely: isothermal exposure at 1173 K and heating and melting in thermal plasma at a bulk temperature of 6500 K. According to the qualitative phase analysis, major phases include MgCO3 and MgO with hexagonal and cubic crystal systems. Complete information is obtained for the lattice structure both in the initial state and after Rietveld refinement of structural parameters. The high-throughput framework Aflow is used to evaluate the phase stability of the crystal lattices using the convex hull construction. The stability plot of MgCO3 and energy color matching are suggested with regard to spin polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Leonov, G. A. Afonina, and V. N. Demkin, Refract. Ind. Ceram., 56, 486–489 (2016).

    Article  Google Scholar 

  2. Keke Li, Fei Zhao, Xia Liu, et al., Ceram. Int., 48, No. 2, 2330–2336 (2022).

    Article  Google Scholar 

  3. Z. A. Babakhanova and M. Kh. Aripova, Refract. Ind. Ceram., 59, 454–458 (2019).

    Article  Google Scholar 

  4. A. V. Kanaki, S. P. Buyakova, and S. N. Kulkov, Izv. Vyssh. Uchebn. Zaved., Fiz., 56, No. 7/2, 251–255 (2013).

    Google Scholar 

  5. S. M. Schmalholz, E. Moulas, O. Plümper, et al., Geochemistry, Geophysics, Geosystems, 21, No. 11, 2020GC009351 (2020).

    Article  ADS  Google Scholar 

  6. F. Lin, S. Couper, M. Jugle, and L. Miyagi, Minerals, 9, No. 11, 650 (2019).

    Article  ADS  Google Scholar 

  7. L. Dubrovinsky and S. Saxena, Phys. Chem. Miner., 24, 547–550 (1997).

    Article  ADS  Google Scholar 

  8. Nico De Koker, Lars Stixrude, Geophys. J. Int., 178, No. 1, 162–179 (2009).

    Article  ADS  Google Scholar 

  9. M. Merlia and A. Paveseb, Calphad, 73, 102259 (2021).

    Article  Google Scholar 

  10. V. A. Vlasov, V. V. Shekhovtsov, O. G. Volokitin, et al., Russ. Phys. J., 61, No. 4, 708–714 (2018).

    Article  Google Scholar 

  11. V. I. Nalivaiko, P. A. Chubakov, A. N. Pokrovsky, et al., Thermophys. Aeromech., 14, No. 2, 247–256 (2007).

    Article  ADS  Google Scholar 

  12. www.crystallography.net/search.html.

  13. S. J. Clark, M. D. Segall, C. J. Pickard, et al., Z. Kristallogr., 220, No. 5−6, 567−570 (2005).

    Article  Google Scholar 

  14. Yu. A. Abzaev, A. M. Lider, V. A. Klimenov, et al., Phys. Solid State, 58, No. 10, 1939–1944 (2016).

    Article  ADS  Google Scholar 

  15. www.aflowlib.org.

  16. C. Oses, E. Gossett, D. Hicks, et al., J. Chem. Inf. Model., 58, No. 12, 2477–2490 (2018).

    Article  Google Scholar 

  17. U. Shusuke, H. Ohtani, and M. J. Hasebe, J. Jpn. I. Met., 71, No. 9, 721–729 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shekhovtsov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 73–78, July, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhovtsov, V.V., Abzaev, Y.A., Volokitin, O.G. et al. Structure and Phase Composition of Natural Magnesite in 1173–6500 K Temperature Range. Russ Phys J 65, 1142–1148 (2022). https://doi.org/10.1007/s11182-022-02743-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02743-w

Keywords

Navigation