Skip to main content
Log in

Density and Electrical Resistivity of Al86Ni6CO2R6 (R = ND, GD, YB) Alloys in Solid and Liquid States

  • Published:
Russian Physics Journal Aims and scope

Aluminum-containing amorphous and nano-crystalline alloys, especially compositions with transition and rare-earth metals, are being intensively investigated over the last years due to their high service properties. This paper studies thermophysical properties (density and electrical resistivity) of Al86Ni6Co2R6 (R = Nd, Gd, Yb) glass-forming compositions in a wide temperature range, including the liquid state. It is found that the behavior of crystalline alloys is typical for aluminum compositions, namely: the linear decrease in density and the growth in electrical resistivity with increasing temperature. It is shown that these compositions are characterized by a wide two-phase region, whereas a transition to the liquid state at the liquidus temperature is accompanied by an abnormal density growth and electrical resistivity reduction. For the first time, it is found that the melt overheating up to 1350 K leads to the density hysteresis, which probably indicates to the fracture of large-scale inhomogeneity in melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue and H. Kimura, J. Light Met., 1, 31−41 (2001). https://doi.org/10.1016/S1471-5317(00)00004-3.

    Article  Google Scholar 

  2. A. Inoue, K. Ohtera, and A. P. Tsai, Jpn. J. Appl. Phys., 27, No. 9, L1579–L1582 (1988). https://doi.org/10.1143/JJAP.27.L736.

    Article  Google Scholar 

  3. G. Abrosimova, V. Chirkova, E. Pershina, et al., Metals, 12, 332 (2022). https://doi.org/10.3390/met12020332.

    Article  Google Scholar 

  4. B. Mironchuk, G. Abrosimova, S. Bozhko, et al., J. Non-Cryst. Sol., 577, 121279 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121279.

    Article  Google Scholar 

  5. G. E. Abrosimova, A. S. Aronin, and D. P. Shirnina, Fizika i tekhnika vysokikh davlenii, 23, No. 1, 90−98 (2013).

    Google Scholar 

  6. L. Wang, L. Ma, H. Kimura, and A. Inoue, Mat. Lett., 52, No. 1−2, 47−52 (2002). https://doi.org/10.1016/S0167-577X(01)00364-0.

    Article  Google Scholar 

  7. C. Suryanarayana and A. Inoue, Bulk Metallic Glasses. CRC Press, 2017.

    Google Scholar 

  8. P. Svec, B. Rusanov, A. Moroz, et al., J. Alloys Compd., 876, 160109 (2021). https://doi.org/10.1016/j.jallcom.2021.160109.

    Article  Google Scholar 

  9. B. Rusanov, V. Sidorov, P. Svec, and D. Janickovic, Phys. B: Cond. Matt., 619, 413216 (2021). https://doi.org/10.1016/j.physb.2021.413216.

    Article  Google Scholar 

  10. B. A. Rusanov, V. E. Sidorov, A. I. Moroz, et al., Tech. Phys. Lett., (2021). https://doi.org/10.1134/S1063785021080101.

  11. S. A. Uporov, N. S. Uporova, and V. E. Sidorov, High Temp., 50, 611–615 (2012). https://doi.org/10.1134/S0018151X12040207.

    Article  Google Scholar 

  12. V. I. Lad’yanov, A. L. Bel’tyukov, S. G. Men’shikova, et al., Phys. Chem. Liq., 46, No. 1, 71−77 (2008). https://doi.org/10.1080/00319100701488508.

    Article  Google Scholar 

  13. V. I. Lad’yanov, A. L. Bel’tyukov, S. G. Men’shikova, and V. A. Volkov, Met. Sci. Heat Treat., 49, No. 5–6, 236−239 (2007). https://doi.org/10.1007/s11041-007-0042-5.

    Article  ADS  Google Scholar 

  14. B. A. Rusanov, E. S. Baglasova, P. S. Popel, et al., High Temp., 56, 439–443 (2018). https://doi.org/10.1134/S0018151X18020190.

    Article  Google Scholar 

  15. A. R. Regel’ and V. M. Glazov, Physical Properties of Electron Melts [in Russian], Nauka, Moscow (1980).

  16. J. J. Wessing and J. Brillo, Metallurg. Mater. Trans. A, 48, 868−882 (2017). https://doi.org/10.1007/s11661-016-3886-8.

    Article  ADS  Google Scholar 

  17. J. Brillo, M. Watanabe, and H. Fukuyama, J. Mol. Liq., 326, 114395 (2021). https://doi.org/10.1016/j.molliq.2020.114395.

    Article  Google Scholar 

  18. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys., 49, No. 3, 435 (1977). https://doi.org/10.1103/RevModPhys.49.435.

    Article  ADS  Google Scholar 

  19. M. G. Vasin and V. G. Lebedev, J. Non Cryst. Solids, 543, 120131 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120131.

    Article  Google Scholar 

  20. L. D. Son, Bull. Russ. Acad. Sci. Phys., 86, No. 2, 145–149 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Rusanov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 112–118, June, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusanov, B.A., Sidorov, V.E., Son, L.D. et al. Density and Electrical Resistivity of Al86Ni6CO2R6 (R = ND, GD, YB) Alloys in Solid and Liquid States. Russ Phys J 65, 1028–1035 (2022). https://doi.org/10.1007/s11182-022-02728-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02728-9

Keywords

Navigation