Skip to main content
Log in

Formation of a Martensite-Austenite Constituent in Х65 Low-Carbon Steel Under Thermomechanical Treatment and Welding

  • Published:
Russian Physics Journal Aims and scope

The features of formation of a martensite-austenite (M-A) constituent in the X65 steel after its helical rolling and laser welding are studied using transmission electron microscopy. Four main types of the M-A constituent are identified in the structures. After thermomechanical treatment at low cooling rates, an island type M-A constituent with a complex internal multiphase structure (Types I and III) or a structure consisting entirely of the twinned martensite (Type II) is formed in the X65 steel. The type of the M-A constituent changes after laser welding. The island multiphase areas of the M-A constituent are replaced by dispersed elongated sections in the heat-affected zones (HAZ), consisting of the residual austenite (Type IV) or the twinned martensite. The satellite spots are observed in the microdiffraction patterns taken from the M-A constituent areas in the HAZ of the welded joint. Their formation is attributed to local supersaturation of carbon in the M-A constituent and its inhomogeneous distribution due to the limited diffusion during fast cooling after laser welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Zajac, V. Schwinn, and K.-H. Tacke, Mater. Sci. Forum, 500501, 387 (2005).

  2. G. Thewlis, Mater. Sci. Technol., 20, 143 (2004).

    Article  ADS  Google Scholar 

  3. M. Smirnov, I. Pyshmintsev, and A. N. Boryakova, Metallurgist, 54, No. 7–8 (2010).

  4. M. Yu. Matrosov, I. V. Lasotskii, A. A. Kichkina, et al., Steel in Translation, 42, 84 (2012).

    Article  Google Scholar 

  5. I. V. Vlasov, S. V. Panin, N. S. Surikova, et al., Russ. Phys. J., 63, No. 7, 1171 (2020).

    Article  Google Scholar 

  6. A. A. Kichkina, M. Y. Matrosov, I. V. Lyasotskii, et al., Metallurgist, 62, No. 7−8, 772 (2018).

    Article  Google Scholar 

  7. A. A. Kruglova, V. V. Orlov, and E. I. Khlusova, Met. Sci. Heat Treat., 47, No. 11−12, 556 (2007).

    Article  ADS  Google Scholar 

  8. E. I. Hernandez-Duran, T. Ros-Yanez, F. M. Castro-Cerda, et al., Mater. Sci. Eng. A, 797, 140061 (2020).

    Article  Google Scholar 

  9. N. Huda, A. R.H. Midawi, J. Gianetto, et al., Mater. Sci. Eng. A, 662, 481 (2016).

    Article  Google Scholar 

  10. L. Xiang, C. Xiaohua, T. Wang, et al., Mater. Sci. Eng. A, 710, 192 (2018).

    Article  Google Scholar 

  11. D. C. Ramachandra, S.-D. Kim, J. Moon, et al., Mater. Lett., 278, 128422 (2020).

    Article  Google Scholar 

  12. A. Lambert, J. Drillet, A. F. Gourgues, et al., Sci. Technol. Weld. Join., 5, 168 (2000).

    Article  Google Scholar 

  13. L. S. Derevyagina, A. I. Gordienko, N. S. Surikova, and M. N. Volochaev, Mater. Sci. Eng. A, 816, 141275 (2021).

    Article  Google Scholar 

  14. V. E. Panin, I. A. Shulepov, L. S. Derevyagina, et al., Phys. Mesomech., 23, No. 5, 376 (2020).

    Article  Google Scholar 

  15. A. I. Gordienko, L. S. Derevyagina, A. G. Malikov, et al., Mater. Sci. Eng. A, 797, 14007 (2020).

    Article  Google Scholar 

  16. L. Y. Lan, C. L. Qiu, D. W. Zhao, et al., Mater. Sci., 47, 4732 (2012).

    Article  ADS  Google Scholar 

  17. E. Bonnevie, G. Ferriere, A. Ikhlef, et al., Mater. Sci. Eng. A, 385, 352 (2014).

    Article  Google Scholar 

  18. M. Mohammadijoo, J. Valloton, L. Collins, et al., Mater. Charact., 142, 321(2018).

    Article  Google Scholar 

  19. L. M. Utevskii, Diffraction Electron Microscopy in Materials Science [in Russian], Metallurgiya, Moscow (1973).

    Google Scholar 

  20. M. Kusunoki and S. Nagakura, J. Appl. Crystallogr., 14, 329 (1981).

    Article  Google Scholar 

  21. S. Nagakura, Y. Hirotsu, M. Kusunoki, et al., Metall. Trans. A, 14, 1025 (1983).

    Article  Google Scholar 

  22. C. Hofer, V. Bliznuk, A. Verdiere, et al., Mater. Charact., 144, 182 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Gordienko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 89–95, June, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordienko, A.I., Volochaev, M.N., Malikov, A.G. et al. Formation of a Martensite-Austenite Constituent in Х65 Low-Carbon Steel Under Thermomechanical Treatment and Welding. Russ Phys J 65, 1004–1011 (2022). https://doi.org/10.1007/s11182-022-02725-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02725-y

Keywords

Navigation