Skip to main content
Log in

Mechanical Properties of Bone Cement Affected by Porosity

  • Published:
Russian Physics Journal Aims and scope

Hip and knee replacement operations mostly utilize the cementing procedure, which determines the biocompatibility relevance of bone cement, a porous material, which is filled with the body fluid after surgery. The paper proposes a computer model of the bone cement mechanical behavior with explicit and implicit analyses of different-size pores, including isolated macropores. The multilevel simulation utilizes the movable cellular automaton method. The mechanical behavior of test samples, both dry and containing the body fluid, is studied under uniaxial compression and four-point bending. Nonlinear porosity dependences are detected for elastic and strength properties of bone cement during compression tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Khramov, M. A. Makarov, S. A. Makarov, et al., Nauchno-prakticheskaya revmatologiya, 55, No. 5, 549–554 (2017).

    Google Scholar 

  2. M. R. Whitehouse, N. S. Atwal, M. Pabbruwe, et al., Eur. Cells Mater., 27, 50–62 (2014). https://doi.org/10.22203/ecm.v027a05

    Article  Google Scholar 

  3. A. Sas, B. Helgason, S. J. Ferguson, Lenthe G. H. van, J. Mech. Behav. Biomed. Mater., 115, 104247 (2021). https://doi.org/10.1016/j.jmbbm.2020.104247.

    Article  Google Scholar 

  4. H. A. Shirazi, A. Asnafi, H. M. Navidbakhs, et al., Mater. Res. Express., 6, 125422 (2020). https://doi.org/10.1088/2053-1591/ab66f5.

    Article  Google Scholar 

  5. J. Slane, J. Vivanco, D. Ebenstein, et al., J. Mech. Behav. Biomed. Mater., 37, 141–152 (2014). https://doi.org/10.1016/j.jmbbm.2014.05.015.

    Article  Google Scholar 

  6. I. Lambrescu, C. Teodoriu, and M. Amani, Materials, 14, No. 23, 7235 (2021). https://doi.org/10.3390/ma14237235.

    Article  ADS  Google Scholar 

  7. B. Cimatti, M. A. Santos, M. S. Dos Brassesco, et al., J. Biomed. Mater. Res., 106, No. 2, 649–658 (2017). https://doi.org/10.1002/jbm.b.33870.

    Article  Google Scholar 

  8. S. Cavalu, KEM, 745, 39–49 (2017). https://doi.org/10.4028/www.scientific.net/KEM.745.39.

    Article  Google Scholar 

  9. H. Asgharzadeh Shirazi, M. R. Ayatollahi, M. Navidbakhsh, and A. Asnafi, Nanomaterials for Advanced Biological Applications. Advanced Structured Materials, Vol. 104, M. Rahmandoust, M. Ayatollahi, eds., Springer, Cham (2019), pp. 209–224 https://doi.org/10.1007/978-3-030-10834-2_8.

  10. K. J. Messick, M. A. Miller, L. A. Damron, et al., J. Bone Joint Surg. Br., 89 B, No. 8, 1115–1121 (2007). https://doi.org/10.1302/0301-620X.89B8.19129.

    Article  Google Scholar 

  11. A. Machrowska, J. Szabelski, R. Karpiński, et al., Materials, 13, 5419 (2020). https://doi.org/10.3390/ma13235419.

    Article  ADS  Google Scholar 

  12. M. R. Whitehouse, N. S. Atwal, M. Pabbruwe, et al., Eur. Cells Mater., 27, 50–62 (2014). https://doi.org/10.22203/ecm.v027a05.

    Article  Google Scholar 

  13. A. Yu. Smolin, E. V. Shilko, S. V. Astafurov, et al., Def. Technol., 14, 643–656 (2018). https://doi.org/10.1016/j.dt.2018.09.003.

    Article  Google Scholar 

  14. E. V. Shilko, A. S. Grigoriev, and A. Yu. Smolin, FU Mech. Eng., 19, 7–22 (2021). https://doi.org/10.22190/FUME201221012S.

  15. A. S. Grigoriev, A. V. Zabolotskiy, E. V. Shilko, et al., Materials, 14, 7376 (2021). https://doi.org/10.3390/ma14237376.

    Article  ADS  Google Scholar 

  16. A. Yu. Smolin, G. M. Eremina, and S. Yu. Korostelev, Russ. Phys. J., 62, No. 8, 1445–1454 (2019).

    Article  Google Scholar 

  17. S. G. Psakhie, A. V. Dimaki, E. V. Shilko, and S. V. Astafurov, Int. J. Numer. Methods Eng., 106, 623–643 (2016). https://doi.org/10.1002/nme.5134

    Article  Google Scholar 

  18. G. Eremina and A. Smolin, Materials, 14, No. 24, 7678 (2021). https://doi.org/10.3390/ma14247678.

    Article  ADS  Google Scholar 

  19. G. Eremina and A. Smolin, Procedia Struct. Integr., 35, 115–123 (2022). https://doi.org/10.1016/j.prostr.2021.12.055.

    Article  Google Scholar 

  20. N. Dunne, Woodhead Publishing Series in Biomaterials, Orthopaedic Bone Cements, Sanjukta Deb, ed., Woodhead Publishing (2008), pp. 233–264. https://doi.org/10.1533/9781845695170.3.233.

  21. A. C. Jones and R. K. Wilcox, Med. Eng. Phys., 30, No. 10, 1287–304 (2008). https://doi.org/10.1016/j.medengphy.2008.09.006

    Article  Google Scholar 

  22. H. Khellafi, M. M. Bouziane, A. Djebli, et al., JBBBE, 41, 37–48 (2019). https://doi.org/10.4028/www.scientific.net/JBBBE.41.37.

    Article  Google Scholar 

  23. G. X. Qu, Z. M. Ying, C. C. Zhao, et al., Int. J. Med. Sci, 15, No. 13, 1458−1465 (2018). https://doi.org/10.7150/ijms.27759.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Smolin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 83–88, June, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolin, A.Y., Eremina, G.M. & Martyshina, I.P. Mechanical Properties of Bone Cement Affected by Porosity. Russ Phys J 65, 998–1003 (2022). https://doi.org/10.1007/s11182-022-02724-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02724-z

Keywords

Navigation