Skip to main content

Advertisement

Log in

Hydrogen Embrittlement of the Low-Carbon Steel Produced by Electron Beam Additive Manufacturing

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

The effect of cathodic hydrogen charging of the Fe-(1.8–2.1)Mn-(0.7–1.0)Si-(0.05–0.11)C low-carbon steel, produced by electron-beam additive manufacturing and industrial casting, on its mechanical properties and fracture mechanisms is studied in different electrolytic solutions. Hydrogen charging causes an increase in the yield strength and a decrease in the elongation both for the steel manufactured by the additive method (ferritic steel) and for the normalized steel produced by the industrial method (ferritic-pearlitic steel). An increased duration of hydrogen charging from 5 to 20 hours at a current density of jH = 250 mA/cm2 (NaCl+NH4SCN aqueous solution) is accompanied by an increase of the hydrogen embrittlement index for the additively produced specimens (IH5h = 13%, IH20h = 19%), but does not affect the IH-value for the normalized industrial steel (IH 5h = 28%, IH 20h = 30%). Even at a lower current density and a shorter charging duration, the use of an aqueous solution of sulfuric acid (H2SO4+CH4N2S) causes stronger hydrogen-induced effects than the charging in an aqueous solution of sodium chloride. Regardless of the manufacturing method and charging regime, hydrogen charging contributes to the formation of fish-eye defects on the fracture surfaces of steels. It is found out that under similar hydrogen charging regimes, the deteriorative effect of hydrogen is less pronounced in the steel produced by the additive manufacture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Lynch, Corros. Rev., 30, 125 (2012).

    Google Scholar 

  2. O. Barrera, D. Bombac, Y. Chen, et al., J. Mater. Sci., 53, 6251 (2018).

    Article  ADS  Google Scholar 

  3. M. B. Djukic, G. M. Bakic, Zeravcic V. Sijacki, et al., Corrosion, 72(7), 943 (2016).

    Article  Google Scholar 

  4. H. K. Birnbaum, MRS Bull., 28(7), 479 (2003).

    Article  Google Scholar 

  5. M. B. Djukic, V. S. Zeravcic, G. M. Bakic, et al., Eng. Fail. Anal., 58, 485 (2015).

    Article  Google Scholar 

  6. L. Tau and S. L.I. Chan, Mater. Lett., 29, 143 (1996).

    Article  Google Scholar 

  7. K. Ichitani and M. Kanno, Adv. Mater., 4, 545 (2003).

    Google Scholar 

  8. J. Song and A. W. Curtin, Nat. Mater., 12(2), 145 (2013).

    Article  ADS  Google Scholar 

  9. M. Dadfarnia, P. Sofronis, and T. Neeraj, Int. J. Hydrogen Energy, 36(16), 10141 (2011).

    Article  Google Scholar 

  10. D. Ngo, A. Kashani, G. Imbalzano, et al., Compos. Part B. Eng., 143, 172 (2018).

    Article  Google Scholar 

  11. L. Ron, G. K. Levy, O. Dolev, et al., Metals, 9, 888 (2019).

    Article  Google Scholar 

  12. X. Chen, J. Li, X. Cheng, et al., Mater. Sci. Eng. A, 715, 307 (2018).

    Article  Google Scholar 

  13. E. G. Astafurova, M.Yu. Panchenko, V. A. Moskvina, et al., J. Mater. Sci., 55, 9211 (2020).

    Article  ADS  Google Scholar 

  14. S.Yu. Tarasov, A. V. Filippov, N. N. Shamarin, et al., J. Alloys Compd., 803, 364 (2019).

    Article  Google Scholar 

  15. E. G. Astafurova, Реунова K. A. Reunova, , Астафуров S. V. Astafurov, et al., Russ. Phys. J., 64, No. 7, 1183 (2021).

  16. N. Li, S. Huang, G. Zhang, et al., Mater. Sci. Tech., 35, 242 (2019).

    Article  Google Scholar 

  17. P. Bajaj, A. Hariharan, A. Kini, et al., Mater. Sci. Eng., 772, 138633 (2020).

    Article  Google Scholar 

  18. E. G. Astafurova, E. V. Melnikov, S. V. Astafurov, et al., Lett. Mater., 11(4), 427 (2021).

    Article  Google Scholar 

  19. Md. R.U. Ahsan, A. N.M. Tanvir, G.-J. Seo, et al., Additive Manuf., 32, 101036 (2020).

    Article  Google Scholar 

  20. L. Sun, F. Jiang, R. Huang, et al., Mater. Sci. Eng. A, 787, 139514 (2020).

    Article  Google Scholar 

  21. Y. Li, S. Wu, H. Li, and F. Cheng, Mater. Lett., 283, 128780 (2020).

    Article  Google Scholar 

  22. S. V.N. Naidu and T. Singh, Wear, 166, 141 (1993).

    Article  Google Scholar 

  23. E. G. Astafurova, S. V. Astafurov, K. A. Reunova, et al., Physical Mesomech., 25, No. 1, 1 (2022).

    Article  Google Scholar 

  24. S. Astafurov, E. Astafurova, K. Reunova, et al., Mater. Sci. Eng., 826, 141951 (2021).

    Article  Google Scholar 

  25. M. L. Martin, J. A. Fenske, G. Liu, et al., Acta Mater., 59(4), 1601 (2011).

    Article  ADS  Google Scholar 

  26. S. P. Lynch, Acta Metall., 36, 2639 (1988).

    Article  Google Scholar 

  27. M. L. Martin, M. Dadfarnia, A. Nagao, et al., Acta Mater., 165, 734 (2019).

    Article  ADS  Google Scholar 

  28. P. Rozenak, I. M. Robertson, and H. K. Birnbaum, Acta Metal. Mater., 38(11), 2031 (1990).

    Article  Google Scholar 

  29. N. Abe, H. Suzuki, K. Takai, et al., Mater. Sci. Technol. Conf. Exhib., 2, 1277 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Panchenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 53–60, June, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchenko, M.Y., Melnikov, E.V., Astafurov, S.V. et al. Hydrogen Embrittlement of the Low-Carbon Steel Produced by Electron Beam Additive Manufacturing. Russ Phys J 65, 966–974 (2022). https://doi.org/10.1007/s11182-022-02720-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02720-3

Keywords

Navigation