Skip to main content
Log in

Modeling of Shock Wave Effects in Metals on the Basis of a Relaxation Model with Dislocation Kinetics of Plastic Shears

  • Published:
Russian Physics Journal Aims and scope

In the range of weak shock waves (before absorption of elastic precursors by the shock wave), the effects of shock wave deformation of aluminum and beryllium alloys are numerically studied by a relaxation model with the dislocation kinetics of plastic shears. The structures of non-stationary and stationary shock wave profiles are modeled. The plastic flow behind the elastic precursor front is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. N. Jonson and L. M. Barker, J. Appl. Phys., 40, No. 11, 4321 (1969).

    Article  ADS  Google Scholar 

  2. J. R. Asay, L. C. Chhabildas, and J. L. Wise, Shock Waves in Condensed Matter (Eds. W. J. Nellis, L. Seaman, and R. A. Graham, Plenum Press, New York (1981).

  3. P. J. Chen, R. A. Graham, and L. Davison, J. Appl. Phys., 43, No. 12, 5021 (1972).

    Article  ADS  Google Scholar 

  4. M. A. Meyers and L. E. Morr in: Shock Waves and High-Strain Rate Phenomena in Metals (Eds. M. A. Meyers and L. E. Murr), Plenum Press, New York (1981).

  5. T. Swensson, in: Shock Waves and High-Strain Rate Phenomena in Metals (Eds. M. A. Meyers and L. E. Murr), Plenum Press, New York (1981).

  6. K. P. Shtaudhammer, S. E. Frantz, S. S. Hecker, and L. E. Morr in: Shock Waves and High-Strain Rate Phenomena in Metals (Eds. M. A. Meyers and L. E. Murr), Plenum Press, New York (1981).

  7. High-Speed Collisions: Strengthening Metals and Alloys with Shock Waves R&D Final Report, Sib. Branch of RI Hydrodynamics, Project supervisor T. M. Sobolenko, Project No. 81096951, Novosibirsk (1985).

  8. M. A. Mogilevskii, Deformation Mechanisms under Shock Wave Loading [in Russian], Dep. VINITI, No. 2830-80, Novosibirsk (1980).

  9. M. A. Sokovikov et al., Zh. Fizich. Mezomekh., 23, No. 2, 45 (2020).

    Google Scholar 

  10. P. V. Makarov, Russ. Phys. J., 63, No. 11, 1876 (2020).

    Article  MathSciNet  Google Scholar 

  11. L. I. Sedov, Continuum Mechanics [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  12. B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasi-Linear Equations and Gas Dynamics Applications [in Russian], Mir, Moscow (1997).

    Google Scholar 

  13. A. R. Champion and R. W. Rohde, J. Appl. Phys., 41, No. 5, 2213 (1970).

    Article  ADS  Google Scholar 

  14. D. C. Wallace, Phys. Rev. B, 22, No. 4, 1495 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Gerlich and S. Hart, J. Appl. Phys., 55, No. 4, 880 (1983).

    Article  ADS  Google Scholar 

  16. D. T.C. Huo and C. H. Ma, Acta Met., 23, 285 (1975).

    Article  Google Scholar 

  17. L. M. Barker and R. E. Hollenbach, J. Appl. Phys., 45, No. 11, 4872 (1974).

    Article  ADS  Google Scholar 

  18. J. R. Asay and L. K. Chhabildas, in: Shock Waves and High-Strain Rate Phenomena in Metals (Eds. M. A. Meyers and L. E. Murr), Plenum Press, New York (1981).

  19. J. L. Wise, L. C. Chhabildas, and J. R. Asay, Shock Waves in Condensed Matter (Eds. W. J. Nellis, L. Seaman, R. A. Graham, American Institute of Physics, New York (1981).

  20. R. J. Clifton and X. Markensoff, J. Mech. Phys. Solids, 29, No. 3, 227 (1981).

    Article  ADS  Google Scholar 

  21. J. O. Erkmant and A. B. Christensen, J. Appl. Phys., 38, No. 13, 5395 (1967).

    Article  ADS  Google Scholar 

  22. J. J. Dick, G. E. Duvall, and J. E. Vorthman, J. Appl. Phys., 47, No. 1, 3987 (1976).

    Article  ADS  Google Scholar 

  23. L. V. Altshuler and B. S. Chekin, Zh. Prikl. Mekh. Tekh. Fiz., Nauka, Novosibirsk (1987), p. 119.

    Google Scholar 

  24. P. V. Makarov and V. A. Skripnyak, Tomsk State University, Tomsk (1982). Dep. VINITI No. 5411-82.

  25. V. P. Glazyrin, P. V. Makarov, and T. M. Platova, Applied Issues of Deformed Solids (Coll. of articles) [in Russian], TSU Publ., Tomsk (1980).

  26. T. E. Ardvisson, Y. M. Gupta, and G. E. Duvall, J. Appl. Phys., 46, No. 10, 4474 (1975).

    Article  ADS  Google Scholar 

  27. J. Lipkin and J. R. Asay, J. Appl. Phys., 48, No. 1, 182 (1977).

    Article  ADS  Google Scholar 

  28. D. J. Steinberg, Equation of State and Strength Properties of Selected Materials: Lawrence Livermore National Laboratory Report (1991).

    Google Scholar 

  29. L. Davison, A. L. Stevens, and M. E. Kipp, J. Mech. Phys. Solids, 25, 11 (1977).

    Article  ADS  Google Scholar 

  30. L. C. Chhabildas, J. L. Wise, and J. R. Asay, Shock Waves in Condensed Matter (Eds. W. J. Nellis, L. Seaman, and R. A. Graham), American Institute of Physics, New York (1981).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Makarov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 131–139, March, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, P.V., Peryshkin, A.Y. Modeling of Shock Wave Effects in Metals on the Basis of a Relaxation Model with Dislocation Kinetics of Plastic Shears. Russ Phys J 65, 535–544 (2022). https://doi.org/10.1007/s11182-022-02665-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02665-7

Keywords

Navigation