Skip to main content
Log in

Discharge Formation in a Trigger Unit Based on a Breakdown Over the Dielectric Surface in a Coldcathode Thyratron

  • PLASMA PHYSICS
  • Published:
Russian Physics Journal Aims and scope

The results of an investigation of pulsed discharge in a trigger unit based on a breakdown over the dielectric surface in a demountable single-sectioned cold-cathode thyratron are presented. The data on delay times in the surface discharge ignition, the hollow-anode arc discharge ignition and the ignition of a discharge in the thyratron main gap are obtained for different trigger pulse amplitudes. It is revealed that the main contribution to the delay time jitter comes from that of the surface discharge ignition. It is shown that the minimal jitter in the delay times of the discharge ignition in the thyratron main gap of no worse than 3 ns is achieved when the trigger pulse amplitude is 8 kV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. D. Korolev and N. N. Koval, J. Phys. D: Appl. Phys, 51, No. 32, 323001 (2018).

    Article  Google Scholar 

  2. R. P. Lamba, V. Pathania, B. L. Meena, et al., Rev. Sci. Instrum., 86, 103508 (2015).

    Article  ADS  Google Scholar 

  3. R. P. Lamba, U. N. Pal, B. L. Meena, and R. Prakash, Plasma Sources Sci. Technol., 27, 035003 (2018).

    Article  ADS  Google Scholar 

  4. N. Kumar, A. Abhishek, Vishant, et al., IEEE Trans. Electr. Dev., 68, No. 12, 6482 (2021).

  5. J. Zhang фтв Y. Zhengб Plasma Chem. Plasma Process., 39, 969 (2019).

  6. J. Zhang and X. Liu, Phys. Plasmas, 25, 013533 (2018).

    Article  ADS  Google Scholar 

  7. J. Zhang and X. Liu, IEEE Trans. Dielectr. Electr. Insul., 24, No. 4, 2050 (2017).

    Article  Google Scholar 

  8. M. Lin, X. Zhan, H. Zhou, and X. Sun, J. Instrum., 15, 03029 (2020).

    Article  Google Scholar 

  9. W. D. Ding, S. K. Shen, J. Q. Yan, et al., IEEE Trans. Plasma Sci., 47, 4572 (2019).

    Article  ADS  Google Scholar 

  10. L. J. Li, Z. Zhao, Y. H. Liu, et al., IEEE Trans. Plasma Sci., 47, 4237 (2019).

    Article  ADS  Google Scholar 

  11. J. Yan, S. Shen, G. Sun, and W. Ding, IEEE Trans. Electr. Dev., 68, No. 5, 2485 (2021).

    Article  ADS  Google Scholar 

  12. K. Frank and J. Christiansen, IEEE Trans. Plasma Sci., 17, No. 5, 748 (1989).

    Article  ADS  Google Scholar 

  13. G. X. Sun, X. Wang, J. Q. Yan, et al., Phys. Plasmas, 29, No. 1, 013503 (2022).

    Article  ADS  Google Scholar 

  14. K. Bergmann, J. Vieker, and A. Wezyk, J. Appl. Phys., 120, No. 14, 143302 (2016).

    Article  ADS  Google Scholar 

  15. X. T. Cao, J. Hu, R. X. Zhang, et al., AIP Advances, 7, No. 11, 115005 (2017).

    Article  ADS  Google Scholar 

  16. N. Kumar, D. K. Pal, A. S. Jadon, et al., Rev. Sci. Instrum., 87, No. 3, 033503 (2016).

    Article  ADS  Google Scholar 

  17. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Phys. Plasmas, 25, No. 11, 113510 (2018).

    Article  ADS  Google Scholar 

  18. N. V. Landl, Y. D. Korolev, V. G. Geyman, and O. B. Frants, Russ. Phys. J., 60, No.8, 1277 (2017).

    Article  Google Scholar 

  19. J. Zhang, X. Li, Y. Liu, et al., Phys. Plasmas, 23, No. 12, 123525 (2016).

    Article  ADS  Google Scholar 

  20. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Russ. Phys. J., 62, No.7, 1269 (2019).

    Article  Google Scholar 

  21. J. Q. Yan, S. K. Shen, Y. A. Wang, et al., Rev. Sci. Instrum., 89, No. 6, 065102 (2018).

    Article  ADS  Google Scholar 

  22. T. Mehr, H. Arentz, P. Bickel, et al., IEEE Trans. Plasma Sci., 23, 324 (1995).

    Article  ADS  Google Scholar 

  23. N. V. Landl, Y. D. Korolev, V. G. Geyman, and O. B. Frants, Russ. Phys. J., 62, No.7, 1279 (2017).

    Article  Google Scholar 

  24. N. V. Landl, Y. D. Korolev, G. A. Argunov, et al., Russ. Phys. J., 63, No.5, 809 (2020).

    Article  Google Scholar 

  25. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., AIP Advances, 9, No. 8, 085326 (2019).

    Article  ADS  Google Scholar 

  26. A. V. Akimov, P. V. Logachev, V. D. Bochkov, et al., IEEE Trans. Dielectr. Electr. Insul., 17, No. 3, 716 (2010).

    Article  Google Scholar 

  27. A. V. Akimov, V. E. Akimov, P. A. Bak, et al., Instrum. Exp. Tech., 55, 55, No. 2, 218 (2012).

  28. N. P. Kondrat’eva, N. N. Koval, Y. D. Korolev, and P. M. Schanin, J. Phys. D: Appl. Phys., 32, No. 6, 699 (1999).

    Article  ADS  Google Scholar 

  29. D. L. Shmelev, S. A. Barengolts, and M. M. Tsventoukh, Plasma Sources Sci. Technol., 23, 062004 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Landl.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 140–147, February, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landl, N.V., Korolev, Y.D., Frants, O.B. et al. Discharge Formation in a Trigger Unit Based on a Breakdown Over the Dielectric Surface in a Coldcathode Thyratron. Russ Phys J 65, 347–354 (2022). https://doi.org/10.1007/s11182-022-02642-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02642-0

Keywords

Navigation