Skip to main content
Log in

A Temperature Dependence of Mechanical Properties and Fracture Mechanisms in Cast Multiprincipal Element Alloys of the FeMnCrNiCo(N) System

  • Published:
Russian Physics Journal Aims and scope

The results of an experimental study of the temperature dependence of mechanical properties and fracture mechanisms of cast multi-principal-element 20.0Fe–20.0Mn–20.0Cr–20.0Ni–20.0Co (high-entropy Cantor alloy), 19.7Fe–20.0Mn–20.0Cr–19.9Ni–19.0Co–1.4N and 20.4Fe–20.4Mn–20.3Cr–20.3Ni–17.0Co–1.6N (at.%) alloys under uniaxial static tension in the temperature interval from 77 K to 473 K are presented. The alloys possess an austenitic structure with dendritic segregations, and nitrogen-alloying is accompanied by the precipitation of the grain-boundary phase (at nitrogen concentration of 1.6 at.%). Their alloying with nitrogen causes an increase in the yield stress values and a stronger temperature dependence of σ0.2(T) over the whole experimental temperature range. In the Cantor alloy, containing no interstitial atoms, a test temperature decrease is accompanied by a simultaneous increase in its strength and elongation. This alloy is characterized by a ductile fracture in the entire test temperature range. Both nitrogen-containing alloys have higher strength properties and plasticity than those of the Cantor alloy. In the temperature range from 183 K to 473 K, both alloys fracture in the transgranular mode and contain numerous dimples on the fracture surfaces. Furthermore, there are secondary intergranular cracks observed on the fracture surfaces of the alloy with 1.6 at.% nitrogen. The elongation of both nitrogen-bearing alloys sharply decreases with the temperature going down to 77 K, and numerous brittle intergranular cracks are observed on the fracture surfaces. In the alloy with 1.4 at.% nitrogen, some regions with ductile transcrystalline fracture are also seen, while a portion of transgranular cleavage-like brittle facets is typical of the alloy with 1.6 at.% nitrogen. In other words, cast nitrogen-doped multicomponent alloys exhibit a ductile-to-brittle transition in a low-temperature deformation regime. According to the energy-dispersive SEM analysis, the low-temperature embrittlement of the alloy with 1.4 at.% nitrogen is due to the formation of grain-boundary segregations. Both these factors contribute to the intergranular fracture of the specimens. In alloy with 1.6 at.% nitrogen, the presence of brittle quasi-cleavages inside the austenite grains indicates the development of a ductile-to-brittle transition in the austenitic phase along with the brittle intergranular cracking due to the presence of grain-boundary nitrides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Cantor, I. T. H. Chang, P. Knight, and A. J.B. Vincent, Mater. Sci. Eng., 375–377, 213 (2004).

    Article  Google Scholar 

  2. J. W. Yeh, S. K. Chen, S. J. Lin, et al., Adv. Eng. Mater., 6(5), 299 (2004).

    Article  Google Scholar 

  3. Y. L. Chen, Y. H. Hu, C. A. Hsieh, et al., J. Alloys Compd., 481, 768 (2009).

    Article  Google Scholar 

  4. D. B. Miracle and O. N. Senkov, Acta Mater., 122, 448 (2017).

    Article  ADS  Google Scholar 

  5. A. Gali and E. P. George, Intermetallics, 39, 74 (2013).

    Article  Google Scholar 

  6. F. Otto, A. Dlouhy, Ch. Somsen, et al., Acta Mater., 61, 5743 (2013).

    Article  ADS  Google Scholar 

  7. Z. Han, W. Ren, J. Yang, et al., J. Alloys Compd., 791, 962 (2019).

    Article  Google Scholar 

  8. I. V. Kireeva, Yu. I. Chumlyakov, A. V. Vyrodova, et al., Mater. Sci. Eng. A, 784, 139315 (2020).

    Article  Google Scholar 

  9. O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, Intermetallics, 19, 698 (2011).

    Article  Google Scholar 

  10. M. Schneider and G. Laplanche, Acta Mater., 204, 116470 (2021).

    Article  Google Scholar 

  11. Z. Wu, C. M. Parish, and H. Bei, J. Alloys Compd., 647, 815 (2015).

    Article  Google Scholar 

  12. M. V. Klimova, A. O. Semenyuk, D. G. Shaysultanov, et al., J. Alloys Compd., 811, 152000 (2019).

    Article  Google Scholar 

  13. E. G. Astafurova, K. A. Reunova, E. V. Melnikov, et al., Mater. Lett., 276, 128183 (2020).

    Article  Google Scholar 

  14. Z. Li, Acta Mater., 164, 400 (2019).

    Article  ADS  Google Scholar 

  15. E. Astafurova, E. Melnikov, S. Astafurov, et al., Mater. Lett., 285, 129073 (2021).

    Article  Google Scholar 

  16. L. Guo, X. Ou, S. Ni, et al., Mater. Sci. Eng. A, 746, 356 (2019).

    Article  Google Scholar 

  17. J. Y. Ko and S. I. Hong, J. Alloys Compd., 743, 115 (2018).

    Article  Google Scholar 

  18. N. Saenarjhan, J. H. Kang, and S. J. Kim, Mater. Sci. Eng., A, 742, 608 (2019).

    Article  Google Scholar 

  19. M. V. Klimova, D. G. Shaysultanov, A. O. Semenyuk, et al., J. Alloys Compd., 849, 156633 (2020).

    Article  Google Scholar 

  20. V. G. Gavriljuk and H. Berns, High Nitrogen Steels, Springer Verlag, Berlin (1999).

    Book  Google Scholar 

  21. I. Moravchik, V. Hornik, P. Minarik, et al., Mater. Sci. Eng. A, 781, 139242 (2020).

    Article  Google Scholar 

  22. N. Saenarjhan, J. H. Kang, and S. J. Kim, Mater. Sci. Eng. A, 742, 608 (2019).

    Article  Google Scholar 

  23. T. Masumura, N. Nakada, T. Tsuchiyama, et al., Acta Metall., 84, 330 (2015).

    Google Scholar 

  24. K. H. Lo, C. H. Shek, and J. K. L. Lai, Mat. Sci. Eng. R, 65, 39 (2009).

    Article  Google Scholar 

  25. I. Moravcik, J. Cizek, L. de Almeida Gouvea, et al., Entropy, 21, 363 (2018).

    Article  ADS  Google Scholar 

  26. I. Moravcik, H. Hadraba, L. Li, et al., Scr. Mater., 178, 391 (2020).

    Article  Google Scholar 

  27. Z. He, N. Jia, H. Yan, et al., Int. J. Plast., 139, 102965 (2021).

    Article  Google Scholar 

  28. J. Gubicza, IGI Global, 359 (2014).

  29. I. V. Kireeva, Yu. I. Chumlyakov, Z. V. Pobedennaya, et al., Tech. Phys. Lett., 43 (13), 615 (2017).

    Article  ADS  Google Scholar 

  30. A. Haglund, M. Koeheler, D. Catoor, et al., Intermetallics, 58, 62 (2015).

    Article  Google Scholar 

  31. Yu. I. Chumlyakov, I. V. Kireeva, E. G. Zakharova, et al., Russ. Phys.J., 45, No. 3, 274 (2002).

    Article  Google Scholar 

  32. G. Laplanche, A. Kostka, O. M. Horst, et al., Acta Mater., 118, 152 (2016).

    Article  ADS  Google Scholar 

  33. Y. Tomota, Y. Xia, and K. Inoue, Acta. Mater., 5, 1577 (1998).

    Article  ADS  Google Scholar 

  34. B. B. Straumal, Y. O. Kucheev, L. I. Efron, et al., J. Mater. Eng. Perf., 21, 667 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Reunova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 111–120, February, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reunova, K.A., Astafurov, S.V. & Astafurova, E.G. A Temperature Dependence of Mechanical Properties and Fracture Mechanisms in Cast Multiprincipal Element Alloys of the FeMnCrNiCo(N) System. Russ Phys J 65, 317–326 (2022). https://doi.org/10.1007/s11182-022-02638-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02638-w

Keywords

Navigation