Skip to main content
Log in

Experimental Ro-Vibrational Line Intensities for the v1 + v2 and v2 + v3 Bands of the D234S Molecule

  • Published:
Russian Physics Journal Aims and scope

The study of the absolute line intensities in the high-resolution spectrum of the D234S molecule in the range of 2300–2900 cm–1 has been carried out for the first time. As a result of our analysis, about 800 experimental intensities of vibrational-rotational transitions have been obtained for the v1 + v2 and v2 + v3 bands, and a set of 6 parameters of the effective dipole moment has been calculated, which reproduce the initial experimental line intensities with standard deviation drms = 9.7%. A list of transitions with frequencies and line intensities in the range under study has been compiled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. N. Rao and A. Weber, Spectroscopy of the Earth’s Atmosphere and Interstellar Medium, Academic Press, London (1992).

    Google Scholar 

  2. C. B. Farmer, Microchim. Acta, 93, 189−214 (1987).

    Article  ADS  Google Scholar 

  3. K. N. Rao, Molecular Spectroscopy: Modern Research III, Academic Press, London (1985).

    Google Scholar 

  4. É. V. Emel’yanov, IR-Range Astrophysics [in Russian], Fizmatlit, Moscow (2009).

    Google Scholar 

  5. E. Herbst and E. F. Van Dishoeck, Annu. Rev. Astron. Astrophys., 47, 427−480 (2009).

    Article  ADS  Google Scholar 

  6. C. Xue, A. J. Remijan, C. L. Brogan, et al., Astrophys. J., 882, 118 (2019).

    Article  ADS  Google Scholar 

  7. M. H. Ordu, O. Zingsheim, A. Belloche, et al., Astron. Astrophys., 629, A72 (2019).

    Article  Google Scholar 

  8. L. S. Rothman, I. E. Gordon, R. J. Barber, et al., J. Quant. Spectrosc. Radiat. Transfer, 111, No. 15, 2139−2150 (2010).

    Article  ADS  Google Scholar 

  9. O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, et al., J. Quant. Spectrosc. Radiat. Transfer, 245, 106879 (2020).

  10. C. Vastel, T. G. Phillips, C. Ceccarelli, and J. Pearson, Astrophys. J. Lett., 593, No. 2, L97 (2003).

    Article  ADS  Google Scholar 

  11. J. M. Flaud, C. Camy-Peyret, and J. W. C. Johns, Can. J. Phys., 61, No. 10, 1462–1473 (1983).

    Article  ADS  Google Scholar 

  12. R. J. Charlson, T. L. Anderson, and R. E. Mc Duff, The Sulfur Cycle. Global Biogeochemical Cycles, Academic Press, San-Diego (1992).

  13. J. Farquhar, H. Bao, and M. Thiemens, Science, 289, 756−758 (2000).

    Article  ADS  Google Scholar 

  14. A. W. Liu, O. N. Ulenikov, G. A. Onopenko, et al., J. Mol. Spectrosc., 238, No. 1, 11−28 (2006).

    Article  ADS  Google Scholar 

  15. J. Cernicharo, F. Daniel, A. Castro-Carrizo, et al., Astrophys. J. Lett., 778, No. 2, L25 (2013).

    Article  ADS  Google Scholar 

  16. F. Zhang, P. A. Glushkov, and E. S. Bekhterev, Russ. Phys. J., 63, No. 7, 1296–1298 (2020).

    Article  Google Scholar 

  17. O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, et al., J. Quant. Spectrosc. Radiat. Transfer, 255, 107236 (2020).

  18. O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, et al., J. Quant. Spectrosc. Radiat. Transfer, 252, 107106 (2020).

  19. J. R. Gillis, R. D. Blatherwick, and F. S. Bonomo, J. Mol. Spectrosc., 114, No. 1, 228−233 (1985).

    Article  ADS  Google Scholar 

  20. C. Camy-Peyret, J. M. Flaud, A. N’Gom, and J. W. C. Johns, J. Mol. Phys., 65, No. 3, 649–657 (1988).

    Article  ADS  Google Scholar 

  21. C. Camy-Peyret, J. M. Flaud, L. Lechuga-Fossat, and J. W. C. Johns, J. Mol. Spectrosc., 109, No. 2, 300−333 (1985).

    Article  ADS  Google Scholar 

  22. M. Quack and F. Merkt, Handbook of High-Resolution Spectroscopy, John Wiley & Sons, Chichester (2011).

    Book  Google Scholar 

  23. O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, et al., J. Quant. Spectrosc. Radiat. Transfer, 255, 107236 (2020).

  24. O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, et al., Phys. Chem. Chem. Phys., 21, No. 16, 8464−8469 (2019).

    Article  Google Scholar 

  25. L. N. Sinitsyn, Methods of High-Resolution Spectroscopy [in Russian], Publishing House of Tomsk State University, Tomsk (2006).

  26. H. Tran, N. H. Ngo, and J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer, 129, 199–203 (2013).

    Article  ADS  Google Scholar 

  27. J. Tennyson, P. F. Bernath, A. Campargue, et al., Pure Appl. Chem., 86, 1931–1943 (2014).

    Article  Google Scholar 

  28. J. M. Flaud and C. Camy-Peyret, J. Mol. Spectrosc., 55, 278–310 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Belova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 170–177, January, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belova, A.S., Bekhtereva, E.S., Ersin, T. et al. Experimental Ro-Vibrational Line Intensities for the v1 + v2 and v2 + v3 Bands of the D234S Molecule. Russ Phys J 65, 185–192 (2022). https://doi.org/10.1007/s11182-022-02621-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02621-5

Keywords

Navigation