Skip to main content
Log in

Numerical Computations of Transition Processes in Direct Current Corona Microdischarge

  • Published:
Russian Physics Journal Aims and scope

The paper presents the expanded hydrodynamic model of the corona microdischarge under atmospheric pressure in argon with regard to the cathode apex heating. Numerical computations demonstrate two operating modes of the negative corona discharge, namely pulse-periodic and glow discharges. All main parameters are obtained for both corona discharges. It is found that Trichel pulse formation is similar to a transition from the Townsend avalanche to glow discharge and self-oscillations manifested themselves as a classical discharge created by planar electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Demkin and S. V. Mel’nichuk, Russ. Phys. J., 60, No. 2, 339–345 (2017).

    Article  Google Scholar 

  2. V. Yu. Kozhevnikov, A. V. Kozyrev, and N. S. Semenyuk, Russ. Phys. J., 59, No. 12, 1981–1988 (2016).

    Article  Google Scholar 

  3. V. F. Tarasenko, D. M. Beloplotov, M. I. Lomaev, D. A. Sorokin, G. V. Naidis, and N. Y. Babaeva, Russ. Phys. J., 61, No. 6, 1135–1142 (2018).

    Article  Google Scholar 

  4. V. Yu. Kozhevnikov, A. V. Kozyrev, and N. S. Semenyuk, Russ. Phys. J., 60, No. 8, 1425–1436 (2017).

    Article  Google Scholar 

  5. E. Kh. Baksht, A. G. Burachenko, A. V. Kozyrev, and V. F. Tarasenko, Russ. Phys. J., 60, No. 8, 1413–1418 (2017).

    Article  Google Scholar 

  6. V. Yu. Kozhevnikov, A. V. Kozyrev, and Yu. D. Korolev, Russ. Phys. J., 49, No. 2, 199–206 (2006).

    Article  Google Scholar 

  7. V. S. Kuznetsov, V. F. Tarasenko, and E. A. Sosnin, Russ. Phys. J., 62, No. 5, 893–899 (2019).

    Article  Google Scholar 

  8. A. A. Saifutdinova, A. O. Sofronitskiy, B. A. Timerkaev, and A. I. Saifutdinov, Russ. Phys. J., 62, No. 11, 2132–2136 (2020).

    Article  Google Scholar 

  9. A. S. Anshakov, P. V. Domarov, and V. A. Faleev, Russ. Phys. J., 62, No. 11, 2101–2105 (2019).

    Article  Google Scholar 

  10. R. Zenter, Math. Phys., 29, 294–301 (1970).

    Google Scholar 

  11. C. Soria, F. Pontiga, and A. Castellanous, J. Phys. D: Appl. Phys., 40, No. 15, 4552–4560 (2007).

    Article  ADS  Google Scholar 

  12. R. Tirumala, Y. Li, D. A. Pohlman, and D. B. Go, J. Electrost., 69, 36–42 (2011).

    Article  Google Scholar 

  13. Z. Li, B. Zhang, and J. He, Phys. Plasmas, 20, 093507 (2013).

    Article  ADS  Google Scholar 

  14. Z. Li, B. Zhang, and J. He, and Y. Xu, Phys. Plasmas, 21, 012113 (2014).

    Article  ADS  Google Scholar 

  15. K. Yanallah, F. Pontiga, and A. Castellanos, J. Phys. D: Appl. Phys., 44, 055201 (2011).

    Article  ADS  Google Scholar 

  16. K. Yanallah and F. Pontiga, Plasma Sources Sci. Technol., 045007 (2012).

  17. P. Dordizadeh, K. Adamiak, and G. P. Castle, J. Phys. D: Appl. Phys., 48, 415203 (2015).

    Article  Google Scholar 

  18. Yu. S. Akishev, Plasma Phys. Rep., 27, No. 6, 520–531 (2001).

    Article  ADS  Google Scholar 

  19. G.-N. B. Dandaron and B. B. Baldanov, Plasma Phys. Rep., 33, No. 3, 243–248 (2007).

    Article  ADS  Google Scholar 

  20. S. N. Abolmasov, L. Kroely, and P. Roca i Cabarrocas, J. Phys. D: Appl. Phys., 41, 165203 (2008).

  21. A. Zahoranova, et al., Acta Phys. Slovaka, 41, No. 1, 49−56 (2004).

    Google Scholar 

  22. G.-N. B. Dandaron and B. B. Baldanov, Prikladnaya Fiz., No. 1, 85−88 (2007).

  23. V. F. Tarasenko, V. S. Kuznetsov, V. A. Panarin, V.S. Skakun, E.A. Sosnin, and E.K. Baksht, JETP Letters, 110, No. 1, 85–89 (2019).

    Article  ADS  Google Scholar 

  24. A. I. Saifutdinov, I. I. Fairushin, and N. F. Kashapov, JETP Lett., 104, 180−185 (2016).

    Article  ADS  Google Scholar 

  25. M. Baeva, D. Loffhagen, and D. Uhrlandt, Plasma Chem. Plasma Process, 39, 1359–1378 (2019).

    Article  Google Scholar 

  26. A. I. Saifutdinov, J. Appl. Phys., 129, No. 9, 093302 (2021).

    Article  ADS  Google Scholar 

  27. A. I. Saifutdinov, B. A. Timerkaev, and A. A. Saifutdinova, JETP Lett., 112, No. 7, 405−412 (2020).

    Article  ADS  Google Scholar 

  28. A. I. Saifutdinov, A. A. Saifutdinova, and B. A. Timerkaev, Plasma Phys. Rep., 44, No. 3, 359–368 (2018).

    Article  ADS  Google Scholar 

  29. N. Hasan, D. S. Antao, and B. Farouk, Plasma Sources Sci. Technol., 23, 16 (2014).

    Article  Google Scholar 

  30. V. I. Arkhipenko, A. A. Kirillov, Ya. A. Safronau, et al., Plasma Sources Sci. Technol., 18, 17 (2009).

    Article  Google Scholar 

  31. V. I. Arkhipenko, A. A. Kirillov, Ya. A. Safronau, and L. V. Simonchik, Eur. Phys. J. D., 60, 455–463 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Saifutdinova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 143–155, January 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saifutdinova, A.A., Timerkaev, B.A. & Saifutdinov, A.I. Numerical Computations of Transition Processes in Direct Current Corona Microdischarge. Russ Phys J 65, 156–168 (2022). https://doi.org/10.1007/s11182-022-02618-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02618-0

Keywords

Navigation