Skip to main content
Log in

Pulsed Non-Self-Sustained Arc Discharge in Extended Hollow Anode

  • Published:
Russian Physics Journal Aims and scope

The paper investigates physical properties of a pulsed arc discharge of low (≈1 Pa) pressure created in argon by a plasma source with the thermionic and hollow cathodes. It is shown that the pulsed discharge is initiated in the extended hollow anode at a higher arcing voltage ranging between 100 and 300 V, thereby providing the current up to 800 А with the peak power of several tens of kilowatts. The growth in the arcing voltage leads to a reduced distribution heterogeneity of the plasma concentration by more than one order of magnitude throughout the hollow anode height. The axial magnetic field increased by the higher current in the magnetic coil leads to an increase in the non-self-sustained arc discharge at a higher arcing voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Denisov, Yu. A. Denisova, E. V. Ostroverkhov, A. A. Leonov, M. V. Savchuk, and E. L. Vardanyan, Russ. Phys. J., 64, No. 1, 145–150 (2020).

    Article  Google Scholar 

  2. V. V. Budilov, Integrated Machining Methods for Constructional and Tool Materials Using Glow and Vacuum Arc Discharges [in Russian], Mashinostroenie, Moscow (2013).

    Google Scholar 

  3. A. S. Grenaderov, K. V. Oskomov, A. A. Solovyev, N. M. Ivanova, and V. S. Sypchenko, Russ. Phys. J., 62, No. 7, 1199–1206 (2019).

    Article  Google Scholar 

  4. A. I. Men’shakov, D. R. Emlin, N. V. Gavrilov, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 61, No. 8/2, 168–172 (2018).

    Google Scholar 

  5. E. L. Vardanyan, K. N. Ramazanov, R. Sh. Nagimov, and A. Yu. Nazarov, Surf. Coat. Technol., 389, 125657 (2020).

    Article  Google Scholar 

  6. V. V. Shugurov, in: Proc. IX International Conf. “Modification of Materials with Particle Beams and Plasma Flows,” Tomsk, Russia (2008), pp. 27–30.

  7. V. V. Yakovlev, V. V. Denisov, N. N. Koval, S. S. Kovalsky, E. V. Ostroverkhov, A. O. Egorov, and M. V. Savchuk, Russ. Phys. J., 63, No. 10, 1757–1765 (2021).

    Article  Google Scholar 

  8. D. P. Borisov, N. N. Koval, and P. M. Shchanin, Russ. Phys. J., 37, No. 3, 295–299 (1994).

    Article  Google Scholar 

  9. L. G. Vintizenko, S. V. Grigoriev, N. N. Koval, V. S. Tolkachev, I. V. Lopatin, and P. M. Schanin, Russ. Phys. J., 44, No. 9, 927–936 (2001).

    Article  Google Scholar 

  10. K. W. Ehlers and K. N. Leung, Rev. Sci. Instrum., 50, No. 3, 356–361 (1979).

    Article  ADS  Google Scholar 

  11. E. M. Oks and A. A. Chagin, Sov. Phys.: Tech. Phys., 58, No. 6, 1191–1193 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kovalsky.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 137–142, January 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalsky, S.S., Denisov, V.V., Ostroverkhov, E.V. et al. Pulsed Non-Self-Sustained Arc Discharge in Extended Hollow Anode. Russ Phys J 65, 150–155 (2022). https://doi.org/10.1007/s11182-022-02617-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02617-1

Keywords

Navigation