Skip to main content
Log in

Transmission of Optical Radiation by a Polydisperse Ice Cloud

  • OPTICS AND SPECTROSCOPY
  • Published:
Russian Physics Journal Aims and scope

Results of calculation of the transmission function for ensembles of ice crystals typical of crystal clouds are presented as functions of the wave numbers. Considering different shapes, size spectra, and aspect ratios of randomly and predominantly oriented crystal ensembles, the transmission function is analyzed in the wavelength range from 0.5 to 15 μm. The most clearly expressed spectral features of the transmission function attendant to variations in the physical and chemical parameters of particles have been noted for large horizontally oriented plates. The influence of different particle sizes and concentrations on the transparency of the medium has been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. F. Stocker, D. Qin, G.-K. Plattner, et al., eds., IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge; New York (2013).

  2. A. Baran, Atm. Res., 112, 45–69 (2012).

    Article  ADS  Google Scholar 

  3. A. I. Obzhirov, Yu. A. Telegin, and A. V. Boloban, Underwater Investigations and Robotics, No. 1, 56–63 (2015).

  4. B. Croft, G. R. Wentworth, R. V. Martin, et al., Nature Commun., 15, No. 7, 13444 (2016); https://doi.org/10.1038/ncomms13444/.

    Article  ADS  Google Scholar 

  5. G. Guyot, F. Olofson, P. Tunved, et al., Atmos. Chem. Phys. Discuss., 1–28 (2017); https://doi.org/10.5194/acp-2017-672.

  6. E. D. Hinckley, Laser Monitoring of the Atmosphere [Russian translation], Mir, Moscow (1976).

  7. V. A. Arkhipov, I. R. Akhmadeev, S. S. Bondarchuk, et al., Opt. Atm. Okeana, 20, No. 1, 48–52 (2007).

    Google Scholar 

  8. S. J. Cooper and T. J. Garrett, Atmos. Meas. Tech., 4, 1593–1602 (2011).

    Article  Google Scholar 

  9. M. D. Alexandrov and M. I. Mishchenko, Opt. Express, 25, No. 4, A134–A150 (2017); https://doi.org/10.1364/OE.25.00A134.

    Article  ADS  Google Scholar 

  10. M. Koike, J. Ukita, J. Ström, et al., GDR Atmospheres, 1798−1822 (2019); https://doi.org/10.1029/2018JD029802.

  11. G. Moiche, O. Jourdan, J. Delanoё, et al., J. Atmos. Chem. Phys., 17, 12845–12869 (2017); https://doi.org/10.5194/acp-17-12845-2017.

    Article  ADS  Google Scholar 

  12. V. Wolf, T. Kuhn, M. Milz, et al., Atmos. Chem. Phys., 18, 17371–17386 (2018); https://doi.org/10.5194/acp-18-17371-2018.

    Article  ADS  Google Scholar 

  13. M. D. Shupe, D. D. Turner, A. Zwink, et al., J. Appl. Meteorol. Climat., 54, 1675–1689 (2015); https://doi.org/10.1175/JAMC-D-15-0054.1.

    Article  ADS  Google Scholar 

  14. A. J. Baran, J. Quant. Spectrosc. Radiat. Transfer, 110, 1239–1260 (2015).

    Article  ADS  Google Scholar 

  15. H. Moosmüller and C. M. Sorensen, J. Quant. Spectrosc. Radiat. Transfer, 204, 250–255 (2018).

    Article  ADS  Google Scholar 

  16. H. Moosmüller and C. M. Sorensen, J. Quant. Spectrosc. Radiat. Transfer, 219, 333–338 (2018).

    Article  ADS  Google Scholar 

  17. B. Baum, P. Yang, A. Heymsfield, et al., J. Quant. Spectrosc. Radiat. Transfer, 146, 123−139 (2014).

    Article  ADS  Google Scholar 

  18. P. Yang, L. Bi, B. Baum, et al., Atm. Sci., 70, 330–347 (2013); https://doi.org/10.1175/JAS-D-12-039.1.

    Article  ADS  Google Scholar 

  19. C. Schmitt, M. Schnaiter, A. Heymsfield, et al., Atm. Sci., 73, 4775–4791 (2016); https://doi.org/10.1175/JAS-D-16-0126.1.

    Article  ADS  Google Scholar 

  20. L. Bi and P. Yang, J. Quant. Spectrosc. Radiat. Transfer, 189, 228–237 (2017); https://doi.org/10.1016/j.jqsrt.2016.12.007.

    Article  ADS  Google Scholar 

  21. J. Giovacchini, Q. J. R. Meteorol. Soc., 143, 3085–3093 (2017); https://doi.org/10.1002/qj.3164.

    Article  ADS  Google Scholar 

  22. O. V. Shefer, J. Quant. Spectrosc. Radiat. Transfer, 117, 104–113 (2013).

    Article  ADS  Google Scholar 

  23. O. V. Shefer, J. Quant. Spectrosc. Radiat. Transfer, 178, 350–360 (2016).

    Article  ADS  Google Scholar 

  24. C. Zhou, P. Yang, A. Dessler, and F. Liang, IEEE Geosci. Remote Sensing Lett., 10, 986–990 (2013).

    Article  Google Scholar 

  25. S. Platnick, K. Meyer, M. King, et al., Trans. Geosci. Remote Sensing, 55, 502–525 (2017).

    Article  ADS  Google Scholar 

  26. P. Yang and Q. Fu, J. Quant. Spectrosc. Radiat. Transfer, 110, 1604–1614 (2009).

    Article  ADS  Google Scholar 

  27. O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Crystal Clouds, Gidrometeoizdat, Leningrad (1984).

    Google Scholar 

  28. M. A. Yurkin and A. G. Hoekstra, J. Quant. Spectrosc. Radiat. Transfer, 112, 2234–2247 (2011).

    Article  ADS  Google Scholar 

  29. M. I. Mishchenko, N. T. Zakharova, N. G. Khlebtsov, et al., J. Quant. Spectrosc. Radiat. Transfer, 178, 276–283 (2016).

    Article  ADS  Google Scholar 

  30. L. Bi, P. Yang, G. W. Kattawar, et al., J. Quant. Spectrosc. Radiat. Transfer, 112, 1492–1508 (2011).

    Article  ADS  Google Scholar 

  31. A. A. Popov, Proc. SPIE, 2822, 186–194 (1996).

    Article  ADS  Google Scholar 

  32. K. Boren and D. Hafman, Absorption and Scattering of Light by Small Particles [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  33. H. Iwabuchi, S. Yamada, and S. Katagiri, Appl. Met. Climat., 53, 1297–1316 (2014); https://doi.org/10.1175/JAMC-D-13-0215.1.

    Article  Google Scholar 

  34. S. G. Warren and R. E. Brandt, J. Geophys. Res., 113, D14220 (1–10) (2008).

  35. H. D. Downing and D. Williams, J. Geophys. Res., 80, No. 12, 1656–1661 (1975).

    Article  ADS  Google Scholar 

  36. R. Irshad, R. G. Graindger, D. M. Peters, et al., Atmos. Chem. Phys., 9, 221–230 (2009).

    Article  ADS  Google Scholar 

  37. O. K. Voitsekhovskaya, D. E. Kashirskii, O. V. Egorov, and O. V. Shefer, J. Appl. Opt., 55, 3814–3823 (2016); https://doi.org/10.1364/AO.55.003814.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Shefer.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 105–113, December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shefer, O.V., Voitsekhovskaya, O.K. Transmission of Optical Radiation by a Polydisperse Ice Cloud. Russ Phys J 64, 2292–2300 (2022). https://doi.org/10.1007/s11182-022-02588-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02588-3

Keywords

Navigation