Skip to main content
Log in

Participation of Ionic Forms in Bisphenol Phototransformation Under Sunlight Exposure

  • Published:
Russian Physics Journal Aims and scope

The absorption and fluorescence spectra of charged anionic and cationic forms of bisphenol A (BPA) have been studied. The nature of electronically excited states and the photolysis of the BPA molecule have been interpreted based on results of quantum chemical calculations. The BPA spectra in an aqueous solution are compared during transition from the neutral to the ionic form. Results of calculations have shown that the small value of the fluorescence quantum yield in all examined molecular structures is determined by the high efficiency of the singlet-triplet conversion. In the anionic BPA form, a decrease in the efficiency of radiation decay channel by two orders of magnitude has been recorded caused by a change in the orbital nature of the fluorescent state compared to the neutral and cationic forms. It is shown that the probability of photolysis of the molecule under study increases due to the overlap of the absorption spectra of the anionic form in an aqueous solution under exposure to sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nakagawa and S. Tayama, Arch. Toxicol., 74, 99−105 (2000).

    Article  Google Scholar 

  2. C. A. Pryde and M. Y. Hellman, J. Appl. Polymer., 25, No. 11, 2573−2587 (1980).

    Article  Google Scholar 

  3. K. Kolšek, J. Mavri, M. Sollner-Dolene, Toxicol. in Vitro, 26, 102−106 (2012).

    Article  Google Scholar 

  4. X. Yang, H. Liu, Q. Yang, et al., Chemosphere, 163, 373−381 (2016).

    Article  ADS  Google Scholar 

  5. P. J. Chen, K. G. Linden, D. E. Hinton, et al., Chemosphere, 65, 1094−1102 (2006).

    Article  ADS  Google Scholar 

  6. S.-H. Yoon, S. Jeong, and S. J. Lee, Environ. Technol., 33, 123−128 (2012).

    Article  Google Scholar 

  7. M. F. Brugnera, K. Rajeshwar, J. C. Cardoso, and M. V. Boldrin Zanoni, Chemosphere, 78, 569−575 (2010).

    Article  ADS  Google Scholar 

  8. E. N. Bocharnikova, O. N. Tchaikovskaya, V. S. Chaidonova, et al., IOP Conference Series: Materials Science and Engineering, 696, 012006 (2019).

    Article  Google Scholar 

  9. D. Aseev, A. Batoeva, M. Sizykh, et al., Int. J. Environ. Res. Public Health, 18, 1152−1162 (2021).

    Article  Google Scholar 

  10. M. Mezcua, J. Ferrer, M. D. Hernando, and A. R. Fernandez-Alba, Food Addit. Contam., 23, No. 11, 1242−1251 (2006).

    Article  Google Scholar 

  11. E. Gondek, A. Danel, B. Kwiecien, et al., Mater. Chem. Phys., 119, Nos. 1–2, 140−144 (2010).

    Article  Google Scholar 

  12. J. Huang, C. He, X. Li, et al., J. Waste Manag., 71, 181−191 (2018).

    Article  Google Scholar 

  13. R. Ullah, I. Ahmad, and Y. Zheng, J. Mol. Struct., 1108, 649−653 (2016).

    Article  ADS  Google Scholar 

  14. H. Wang, Y. H. Zhao, Y. J. Zhu, and J. Y. Shen, Vacuum, 128, 198−204 (2016).

    Article  ADS  Google Scholar 

  15. P. Zhang, X. Ji, H. Zhang, and B. Xia, Comput. Theor. Chem., 1108, 76−85 (2017).

    Article  ADS  Google Scholar 

  16. Yu. P. Morozova, O. N. Tchaikovskaya, and N. Yu. Vasil’eva, Zh. Fiz. Khim., 72, No. 2, 272−276 (1998).

    Google Scholar 

  17. O. N. Tchaikovskaya, T. V. Sokolova, and I. V. Sokolova, Zh. Prikl. Spektrosk., 72, No. 2, 165–170 (2005).

    Google Scholar 

  18. O. K. Bazyl’, V. Ya. Artyukhov, O. N. Chaikovskaya, and G. V. Mayer, Opt. Spektrosk., 97, No. 4, 589–596 (2004).

    Article  Google Scholar 

  19. V. Ya. Artyukhov and A.I. Galeeva, Russ. Phys. J., 29, No. 11, Russ. Phys. J., 949–952 (1986).

  20. E. Scroco and J. Tomasi, Adv. Quantum Chem., 11, 115−193 (1978).

    Article  ADS  Google Scholar 

  21. V, Ya. Artyukhov, J. Struct. Chem., 19, No. 3, 364−368 (1978).

  22. G. V. Mayer, V. G. Plotnikov, and V. Ya. Artyukhov, Russ. Phys. J., 59, No. 4, 513–524 (2016).

    Article  Google Scholar 

  23. R. S. Mulliken, J. Chem. Phys., 23, No. 10, 1833−1840 (1955).

    Article  ADS  Google Scholar 

  24. G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules [Russian translation], Mir, Moscow (1969).

    Google Scholar 

  25. G. Kohler and N. Getoff, J. Chem. Soc. Faraday Trans., 72, No. 1, 2101−2107 (1976).

    Article  Google Scholar 

  26. G. Kohler and N. Getoff, Chem. Phys. Lett., 26, No. 4, 525−528 (1974).

    Article  ADS  Google Scholar 

  27. E. N. Bocharnikova, O. K. Bazyl, O. N. Tchaikovskaya, and G. V. Mayer, Opt. Spektrosk., 129, No. 5, 541−549 (2021).

    Google Scholar 

  28. V. Ya. Artyukhov, O. K. Bazyl, and G. V. Mayer, Russ. Phys. J., 54, No. 12, 1299–1303 (2011).

    Article  Google Scholar 

  29. A. I. Kitaigorodskii, P. M. Zorkii, and V. K. Bel’skii, Structure of an Organic Substance (Data of Structural Research in 1929–1970) [in Russian],Nauka, Moscow (1980).

  30. E. M. Sokolov, L. E. Shainkman, and D. V. Dergunov, Water: Chemistry and Ecology, No. 4, 26−32 (2012).

    Google Scholar 

  31. G. V. Mayer, O. K. Bazyl, and V. Ya. Artyukhov, Opt. Spektrosk., 72, No. 6, 1371−1376 (1992).

    Google Scholar 

  32. B. R. Eggins, Chemical Structure and Reactivity [Russian translation], Mir, Moscow (1976).

    Google Scholar 

  33. V. N. Kondratyev, Yu. A. Lebedev, V. A. Medvedev, et al., Energy of Breaking Chemical Bonds. Ionization and Electron Affinity Potentials [in Russian], Nauka, Moscow (1974).

  34. L. J. Bellamy, The Infra-red Spectra of Complex Molecules [Russian translation], Inostrannaya Literatura, Moscow (1957).

    Google Scholar 

  35. I. Gultekin, V. Mavrov, and N. H. Ince, J. Adv. Oxid. Technol., 12, No. 2, 242−248 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. K. Bazyl.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 14–21, November, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazyl, O.K., Bocharnikova, E.N., Tchaikovskaya, O.N. et al. Participation of Ionic Forms in Bisphenol Phototransformation Under Sunlight Exposure. Russ Phys J 64, 1999–2007 (2022). https://doi.org/10.1007/s11182-022-02549-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02549-w

Keywords

Navigation