Skip to main content
Log in

Deformation and Fracture of High Entropy AlCoCrFeNi Alloy

  • Published:
Russian Physics Journal Aims and scope

Wire arc additive manufacturing in pure argon is used to fabricate the high entropy alloy system Al–Co–Cr–Fe–Ni of the nonequiatomic composition: Al (35.67±1.34) at.%, Ni (33.79±0.46) at.%, Fe (17.28±1.83) at.%, Cr (8.28±0.15) at.%, and Co (4.99±0.09) at.%. According to the scanning electron microscopy, the high entropy alloy is a polycrystalline material with the grain size ranging between 4 and 15 μm. The second phase particles are observed along its grain boundaries. Mapping methods are used to show that the grains are enriched with aluminum and nickel, while the grain boundaries contain chromium and iron. A quasihomogeneous cobalt distribution is observed in the crystal lattice of the manufactured high entropy alloy. Tensile strength testing of the material shows its fracture by a transcrystalline rupture mechanism. The formation of brittle cracks occurs along the grain boundaries and point intersections, i.e., in places containing secondary phase inclusions. It is supposed that the higher brittleness of the high entropy alloy is caused by a nonuniform distribution of elements in the alloy microstructure and the presence of discontinuities of different shape in the bulk material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. George, W. A. Curtin, and C. C. Tasan, Acta Mater., 18, 435−474 (2020).

    Article  ADS  Google Scholar 

  2. Y. F. Ivanov, K. A. Osintsev, V. E. Gromov, S. V. Konovalov, and I. A. Panchenko, Steel Transl., 51, No. 1, 27−32 (2021).

    Article  Google Scholar 

  3. A. S. Rogachev, Phys. Met. Metallogr., 121, No. 8, 733–764 (2020).

    Article  ADS  Google Scholar 

  4. А. D. Pogrebnyak, A. A. Bagdasaryan, I. V. Yakushenko, and V. M. Beresnev, Russ. Chem. Rev., 83, No. 11, 1027–1061 (2014).

    Article  ADS  Google Scholar 

  5. A. Kilmametov, R. Kulagin, A. Mazilkin, et al., Scripta Mater., 158, 29–33 (2019).

    Article  Google Scholar 

  6. H. Cheng, Y. Xie, Q. Tang, et al., Trans. Nonferrous Met. Soc. China, 28, 1360–1367 (2018).

    Article  Google Scholar 

  7. Q. Shen and X. Kong, J. Mater. Sci. Technol., 74, 136−142 (2021).

    Article  Google Scholar 

  8. Y. Geng, S. V. Konovalov, and X. Chen, Prog. Phys. Met., 21, No. 1, 26−45 (2020).

    Google Scholar 

  9. J. M. Wu, S. J. Lin, J. W. Yeh, et al., Wear, 261, 513−519 (2006).

    Article  Google Scholar 

  10. M. H. Chuang, M. H. Tsai, W. R. Wang, et al., Acta Mater., 59, 6308−6317 (2011).

    Article  ADS  Google Scholar 

  11. Y. F. Kao, T. D. Lee, S. K. Chen, et al., Corros. Sci., 52, 1026−1034 (2012).

    Article  Google Scholar 

  12. Q. Wang, Y. Ma, B. Jiang, et al., Scripta Mater., 120, 85−89 (2016).

    Article  Google Scholar 

  13. T. Xiong, S. Zheng, J. Pang, et al., Scripta Mater., 186, 336−340 (2020).

    Article  Google Scholar 

  14. R. John, A. Karati, J. Joseph, et al., J. Alloys Compd., 835, 155424 (2020).

  15. X. Jin, Y. Liang, L. Zhang, et al., Mater. Sci. Eng. A, 745, 137−143 (2019).

    Article  Google Scholar 

  16. Y. Liu, J. Chen, Z. Li, et al., J. Alloys Compd., 780, 558−564 (2019).

    Article  Google Scholar 

  17. M. Chen, L. Lan, X. Shi, et al., J. Alloys Compd., 777, 180−189 (2019).

    Article  Google Scholar 

  18. S. Qiu, X.-C. Zhang, J. Zhou, et al., J. Alloys Compd., 846, 156321 (2020).

  19. Y. Zhang, T. T. Zuo, Z. Tang, et al., Prog. Mater. Sci., 61, 1–93 (2014).

    Article  Google Scholar 

  20. D. B. Miracle and O. N. Senkov, Acta Mater., 122, 448–511 (2017).

    Article  ADS  Google Scholar 

  21. B. S. Murty, J. W. Yeh, S. Ranganathan, and P. P. Bhattacharjee, High-Entropy Alloys, Elsevier, Amsterdam (2019).

    Book  Google Scholar 

  22. Y. Zhang, High-Entropy Materials. A Brief Introduction, Springer Nature (2019).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Ivanov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 103–108, September, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, Y.F., Gromov, V.E., Osintsev, K.A. et al. Deformation and Fracture of High Entropy AlCoCrFeNi Alloy. Russ Phys J 64, 1697–1702 (2022). https://doi.org/10.1007/s11182-022-02509-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02509-4

Keywords

Navigation