Skip to main content
Log in

Emission of Nitrogen Molecules at Tight Focusing of Femtosecond Laser Pulses in Air

  • OPTICS AND SPECTROSCOPY
  • Published:
Russian Physics Journal Aims and scope

A numerical model describing the dynamics of plasma particle density upon filamentation of femtosecond emission in air is presented. The simulation results are in good agreement with the available experimental data. The pumping processes of the N2 and N2+ radiative levels are investigated. The model predicts a tight drop in the electron temperature and density within 1 ns. For the first positive nitrogen system, an excess of the population of the upper emission level over the population of the lower level is observed for 550 ps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Sprangle, J. Peñano, B. Hafizi, et al., Appl. Phys. Lett., 98, 211102 (2011).

  2. N. G. Ivanov, I. A. Zyatikov, V. F. Losev, and V. E. Prokop’ev, Opt. Commun., 456, 124573 (2020).

  3. D. Kartashov, S. Ališauskas, A. Pugžlys, et al., J. Phys. B, 48, 094016 (2015).

  4. P. Polynkin and Y. Cheng, eds., Air Lasing, Springer Series in Optical Sciences 208, Springer (2018).

  5. N. G. Ivanov, V. F. Losev, V. E. Prokop’ev, and K. A. Sitnik, Atmos. Oceanic Opt., 29, 385−389 (2016).

  6. A. A. Ilyin, S. S. Golik, K. A. Shmirko, et al., Quant. Electr., 48, No. 2, 149−156 (2018).

    Article  ADS  Google Scholar 

  7. N. G. Ivanov, V. F. Losev, and V. E. Prokop’ev, Quant. Electr., 48, No. 9, 826−832 (2018).

    Article  ADS  Google Scholar 

  8. A. A. Ilyin, S. S. Golik, and K. A. Shmirko, Spectrochim. Acta B, 112, 16−22 (2015).

    Article  Google Scholar 

  9. H. Xu, E. Lotstedt, A. Iwasaki, and K. Yamanouchi, Nat. Commun., 6, 8347 (2015).

    Article  ADS  Google Scholar 

  10. Y. Liu, P. Ding, G. Lambert, et al., Phys. Rev. Lett., 115, 133203 (2015).

  11. E. Stambulchik, E. Kroupp, Y. Maron, and V. Malka, Atoms, 8, 84 (2020).

    Article  ADS  Google Scholar 

  12. A. A. Ilyin, O. A. Bukin, and I. G. Nagornyi, Pis’ma Zh. Tekh. Fiz., 36, No. 14, 60−64 (2010).

    Google Scholar 

  13. N. L. Aleksandrov, S. B. Bodrov, M. V. Tsarev, et al., Phys. Rev. E, 94, 013204 (2016).

  14. E. Arévalo and A. Becker, Phys. Rev. A, 72, 043807 (2005).

  15. J. Kasparian, R. Sauerbrey, and S. L. Chin, Appl. Phys. B, 71, 877−879 (2000).

    Article  ADS  Google Scholar 

  16. C. O. Johnston, Nonequilibrium shock-layer radiative heating for Earth and Titan entry, Ph. D. Thesis, Virginia Polytechnic Institute and State University (2006).

  17. T. Tabata, T. Shirai, M. Sataka, and H. Kubo, At. Data Nucl. Data Tables, 92, 375−406 (2006).

    Article  ADS  Google Scholar 

  18. T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, J. Anal. At. Spectrom., 31, 90−118 (2016).

    Article  Google Scholar 

  19. G. P. Smith and L. C. Lee, J. Chem. Phys., 69, 5393−5399 (1978).

    Article  ADS  Google Scholar 

  20. G. P. Smith and L. C. Lee, J. Chem. Phys., 70, 1727−1735 (1979).

    Article  ADS  Google Scholar 

  21. M. N. Shneider, A. M. Zheltikov, and R. B. Miles, Phys. Plasmas, 18, 063509 (2011).

  22. A. W. Ali, Electron Energy Loss Rates in N2, O2, and Air, NRL Memorandum Report 5400, Naval Research Laboratory, Washington (1984).

  23. A. I. Florescu-Mitchell and J. B. A. Mitchell, Phys. Rep., 430, 277−374 (2006).

    Article  ADS  Google Scholar 

  24. A. Becker, A. D. Bandrauk, and S. L. Chin, Chem. Phys. Lett., 343, 345−350 (2001).

    Article  ADS  Google Scholar 

  25. J. Troe, Phys. Chem. Chem. Phys., 7, 1560−1567 (2005).

    Article  Google Scholar 

  26. A. A. Matveyev and V. P. Silakov, Plasma Sources Sci. Technol., 8, 162−178 (1999).

    Article  ADS  Google Scholar 

  27. M. T. Nguyen, Coord. Chem. Rev., 244, 93−113 (2003).

    Article  Google Scholar 

  28. S. C. Ostrander and J. C. Weisshaar, Chem. Phys. Lett., 129, 220−224 (1986).

    Article  ADS  Google Scholar 

  29. C. Leonard, P. Rosmus, S. Carter, and N. C. Handy, J. Phys. Chem. A, 103, 1846−1852 (1999).

    Article  Google Scholar 

  30. F. Vidal, D. Comtois, C.-Y. Chien, et al., IEEE Trans. Plasma Sci., 28, 418−433 (2000).

    Article  ADS  Google Scholar 

  31. A.-M. Diamy, L. Hochard, J.-C. Legrand, et al., Plasma Chem. Plasma P., 18, 447−460 (1998).

    Article  Google Scholar 

  32. S. V. Pancheshnyi, S. M. Starikovskaia, and A. Yu. Starikovskii, Chem. Phys. Lett., 294, 523−527 (1998).

    Article  ADS  Google Scholar 

  33. L. G. Piper, B. D. Green, W. A. M. Blumberg, et al., J. Chem. Phys., 82, 3139−3145 (1985).

    Article  ADS  Google Scholar 

  34. L. G. Piper, J. Chem. Phys., 97, 270−275 (1992).

    Article  ADS  Google Scholar 

  35. D. Khmara and Y. Kolesnichenko, Modeling of Microwave Filament Origination, in: AIAA 44th Aerospace Sciences Meeting and Exhibit AIAA 2006-794, Reno, Nevada (2006); https://doi.org/10.2514/6.2006-794.

  36. I. A. Kissyi, A. Yu. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol., 1, 207−220 (1992).

    Article  ADS  Google Scholar 

  37. M. Fitaire, A. M. Pointu, D. Stathopoulos, et al., J. Chem. Phys., 81, 1753−1758 (1984).

    Article  ADS  Google Scholar 

  38. G. G. Chernyi and S. A. Losev, eds., Physical and Chemical Processes in Gas Dynamics: A Handbook, Vol. 1 [in Russian], “Scientific World” Publishing House, Moscow (2007).

  39. J. Bacri and A. Medani, Physica C, 112, 101−118 (1982).

    Article  Google Scholar 

  40. A. A. Ilyin, S. S. Golik, K. A. Shmirko, et al., Spectrochim. Acta B, 138, 97−105 (2017).

    Article  ADS  Google Scholar 

  41. A. A. Ilyin, O. A. Bukin, and A. V. Bulanov, Тech. Phys., 53, 693–696 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ilyin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 42–48, September, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyin, A.A., Shmirko, K.A., Golik, S.S. et al. Emission of Nitrogen Molecules at Tight Focusing of Femtosecond Laser Pulses in Air. Russ Phys J 64, 1629–1636 (2022). https://doi.org/10.1007/s11182-022-02499-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02499-3

Keywords

Navigation