Skip to main content

Advertisement

Log in

Numerical Simulation of a Multi-Output Radar Orthogonal Waveform Based on a Chaos Optimization Algorithm

  • Published:
Russian Physics Journal Aims and scope

Aiming at problems of low probability of interception and poor anti-jamming performance of the multi-output radar, the numerical simulation based on a chaos optimization algorithm is proposed. Firstly, chaotic frequency coding is applied to the multi-output radar signal, and different frequency modulation methods are applied to different subpulses. At the same time, in view of the low efficiency of the numerical simulation algorithm in large space and high dimensional optimization, the GASA algorithm is used to increase the diversity of chaotic optimization algorithm search process. According to the specific working mode, the initial phase of each cycle of the multi-output radar orthogonal waveform is obtained, and the number of numerical simulations of multi-output radar orthogonal waveforms is established by the Model. Experimental results show that the proposed method can improve the radar energy utilization and signal-to-noise ratio, allocate reasonably the transmitting energy, and keep the structural stability of the LFM signal frequency changing continuously with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Hu, C. Feng, Y. Wang, et al., IEEE Trans. Geosci. Remote Sens., 58, No. 4, 2898–2914 (2020).

    Article  ADS  Google Scholar 

  2. Q. Zhang, Y. Gong, and Y. Chen, J. Beijing Univ. Technol., 28, No. 01, 141–149 (2019).

    Google Scholar 

  3. B. C. Zhou and H. L. Zhang, Comp. Simul., 35, No. 05, 233–236 (2018).

    Google Scholar 

  4. Y. Ge, Z. Liu, H. Sun, et al., Energy, 147, No. 15, 1060–1069 (2018).

    Article  Google Scholar 

  5. B. Reihs, A. Vananti, and T. Schildknecht, Adv. Space Res., 66, No. 2, 426–443 (2020).

    Article  ADS  Google Scholar 

  6. J. Yan, Y. Gou, S. Zhang, et al., IEEE Trans. Plasma Sci., 12, No. 3, 3015–3025 (2019).

    Article  ADS  Google Scholar 

  7. R. Feghhi, D. Oloumi, and K. Rambabu, IEEE Trans. Microwave Theory, 1, No. 99, 1-1 (2020).

    Google Scholar 

  8. M. Orouskhani, M. Teshnehlab, and M. A. Ind, Int. J. Mach. Learn. Cybern., 10, No. 8, 1931–1959 (2019).

    Article  Google Scholar 

  9. A. D. Byrd, R. D. Palmer, and C. J. Fulton, IEEE. Trans. Geosci. Remote Sens. Lett., 58, No. 4, 2796–2808 (2020).

    Google Scholar 

  10. L. Bing, Y. P. Wang, et al., Water. Resour. Manag., 31, No. 3, 1–30 (2018).

    Google Scholar 

  11. J. Li, J. Cai, and K. Qu, AIAA J., 56, No. 3, 1–13 (2018).

    Article  Google Scholar 

  12. X. Wang, H. Li, L. He, et al., Int. J. Heat Mass Transf., 127, No. 1, 1114–1127 (2018).

    Article  Google Scholar 

  13. Y. Wu, H. Zhao, C. Zhang, et al., Energy, 151, No. 15, 79–93 (2018).

    Article  Google Scholar 

  14. Y. S. Lin and K. S. Lan, Analog. Integr. Circuits Signal Proc., 103, No. 3, 435–450 (2020).

    Article  Google Scholar 

  15. F. J. Escribano, J. Saez-Landete, and A. Wagemakers, IEEE Trans. Commun., 67, No. 1, 590–598 (2019).

    Article  Google Scholar 

  16. X. F. Liu, W. Nie, W. J. Zhou, et al., Process Saf. Environ. Prot., 136, No. 12, 353–370 (2020).

    Article  Google Scholar 

  17. R. Wang, W. Kang, G. Liu, et al., IEEE. Access, 8, No. 4, 33631–33643 (2020).

    Article  Google Scholar 

  18. R. Ahmad, A. Farooqi, J. Zhang, et al., Appl. Math. Nonlinear Sci., 4, No. 1, 255–266 (2019).

    Article  Google Scholar 

  19. A. Duran, Appl. Math. Nonlinear Sci., 3, No. 2, 627–648 (2020).

    Article  Google Scholar 

  20. E. Ilhan, and I. Onur Klymaz, Appl. Math. Nonlinear Sci., 5, No. 1, 171–188 (2020).

    Article  MathSciNet  Google Scholar 

  21. A. Shvets and A. Makaseyev, Appl. Math. Nonlinear Sci., 4, No. 1, 1–8 (2019).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caifeng Sun.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 17–28, September, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., López, M.A. Numerical Simulation of a Multi-Output Radar Orthogonal Waveform Based on a Chaos Optimization Algorithm. Russ Phys J 64, 1599–1612 (2022). https://doi.org/10.1007/s11182-022-02497-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02497-5

Keywords

Navigation