Skip to main content
Log in

Numerical Modeling of Motion of Near-Earth Objects in a Parallel Computing Environment

  • Published:
Russian Physics Journal Aims and scope

A new version of the numerical model of artificial Earth satellites (AES) motion is presented, which consists of four program blocks intended for 1) predicting the AES motion, 2) studying the chaotic condition in motion of near-Earth space objects, 3) determining the AES motion parameters from the measurement data, and 4) studying the resonance dynamics of near-Earth objects. The main feature of the new version is the use of a new more efficient integrator, which is a further development of the well-known Everhart integrator. It is shown that with the same accuracy, the new integrator has much higher performance. The version intended for use in the parallel computing environment and called the “Numerical model of motion of AES systems” has undergone additional changes related to the optimization of the computation parallelization process. The estimates show that with the new method of parallelization, the integration accuracy is more stable and the integration speed increases several times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. V. Bordovitsyna, L. E. Bykova, V.A. Tamarov, and N. A. Sharkovskij, Proceedings of the VI Joint Scientific Readings on Cosmonautics [Russian translation], Moscow, 180–189 (1982).

  2. T. V. Bordovitsyna, A. P. Baturin, V.A. Avdyushev, and P. V. Kulikova, Izv. Vyssh. Uchebn. Zaved. Fiz., 50, No. 12/2, 60-67 (2007).

    ADS  Google Scholar 

  3. T. V. Bordovitsyna, V. A. Avdyushev, and I. N. Chuvashov, Izv. Vyssh. Uchebn. Zaved. Fiz., 52, No. 10/2, 5–11 (2009).

    Google Scholar 

  4. T. V. Bordovitsyna, A. G. Aleksandrova, and I. N. Chuvashov, Izv. Vyssh. Uchebn. Zaved. Fiz., 53, No. 8/2, 14–21(2010).

    Google Scholar 

  5. A. G. Aleksandrova, T. V. Bordovitsyna, and I. N. Chuvashov, Russ. Phys. J., 60, No. 1, 80-89 (2017).

    Article  Google Scholar 

  6. E. Everhart, Celest. Mech. Dyn. Astr., 10, 35–55 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  7. E. Everhart, Dynamics of Comets: Their Origin and Evolution. Proceedings of IAU Colloq. 83, held in Rome, Italy, June 11–15, 1984 / ed. by A. Carusi and G. B. Valsecchi. – Dordrecht: Reidel, Astrophysics and Space Science Library, 115, 185–202. (1985).

  8. V. A. Avdyushev, Vychislitel’nye Tekhnologii, 15, No. 4, 31–47 (2010).

    Google Scholar 

  9. A. G. Aleksandrova, T. V. Bordovitsyna,N. A. Popandopulo, and I. V. Tomilova, Russ. Phys. J., 63, No. 1, 64-70 (2020).

    Article  ADS  Google Scholar 

  10. V. A. Avdyushev, Russ. Phys. J., 63, No. 11. 1977–1988 (2021).

    Article  Google Scholar 

  11. P.M. Cincotta and C. Simó, Astronomy and Astrophysics Supplement, 147, 205–228 (2000).

    Article  ADS  Google Scholar 

  12. P. M. Cincotta, C. M. Girdano, and C. Simo, Physica D, 182, 151–178 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Valk, N. Delsate, A. Lemaître, and T. Carletti, Adv. Space Res., 43, 1509–1526 (2009).

    Article  ADS  Google Scholar 

  14. L. E. Canningham, Celest. Mech. Dyn. Astr., 2, 207-216 (1970).

    Article  ADS  Google Scholar 

  15. G. Petit and B. Luzum, IERS Technical Note 36, Frankfurt am Main (2010).

  16. N. G. Duboshin, Celestial mechanics. The main tasks and methods [in Russian], Nauka, Moscow (1968).

  17. Lunar Prospector Spherical Harmonics and Gravity Models, URL: http://pds-geosciences.wustl.edu/missions/lunarp/shad (December 7, 2010).

  18. D. Vokrouhlicky, P. Farinella, and F. Mignard, Astron. Astrophys., 290, 324–334 (1993).

    ADS  Google Scholar 

  19. D. Vokrouhlicky, P. Farinella, and F. Mignard, Astron. Astrophys., 307, 635–644 (1996).

    ADS  Google Scholar 

  20. T. V. Bordovitsyna and V. A. Avdyushev, Theory of Motion of Artificial Earth Satellites. Analytical and Numerical Methods [in Russian], Publishing House of Tomsk State University, Tomsk (2007).

  21. H. P. Robertson, Mon. Not. R. Astron. Soc., 97, 423–438 (1937).

    Article  ADS  Google Scholar 

  22. V. A. Brumberg,Celest. Mech. and Dyn. Astron., 88, 209–225 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  23. V. A. Brumberg and T. V. Ivanova, Celest. Mech. Dyn. Astron., 97, 189–210 (2007).

    Article  ADS  Google Scholar 

  24. M. Picone, A. E. Hedin, and D. Drob [Electronic resource], Naval Research Laboratory, URL: http://modelweb.gsfc.nasa.gov/atmos/nrlmsise00.html (Date of Reference November 30, 2015).

  25. A. Guillou and J. L. Soule, Rev. Francaise Informat. Recherche Oprationnelle 3, Ser. R-3, 17–44 (1969).

  26. K. Wright, BIT, 10, 217–227 (1970).

    Article  Google Scholar 

  27. E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary Differential Equations. Nonstiff Problems, Springer, (2008).

  28. E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Aleksandrova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 168–175, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrova, A.G., Avdyushev, V.A., Popandopulo, N.A. et al. Numerical Modeling of Motion of Near-Earth Objects in a Parallel Computing Environment. Russ Phys J 64, 1566–1575 (2021). https://doi.org/10.1007/s11182-021-02491-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02491-3

Keywords

Navigation