Skip to main content
Log in

Damage Mechanism Analysis and Protection Method of Ionizing Radiation Based on Electromagnetic Radiation Characteristics

  • Published:
Russian Physics Journal Aims and scope

This paper studies the damage mechanism and protection method of ionizing radiation damage based on electromagnetic radiation characteristics. In this paper, the ferroelectric layer polarization model was established based on the ferroelectric field effect transistor (FEFET) capacitance variation with gate voltage. This paper analyzed the ionizing radiation damage mechanism of electrical characteristics from two aspects of horizontal voltage and threshold voltage drift. The reinforcement design of the ferroelectric effect transistor was realized by using the anti-transient ionizing radiation reinforcement design method of the FPGA circuit. The three-fold redundancy design method based on instantaneous ionizing radiation effect was applied to protect electronic devices from ionizing radiation in reinforcement design. The results show that the threshold voltage drift caused by the oxide trap charge is proportional to the radiation dose. The threshold voltage drift caused by the interface trap charge is proportional to the radiation dose in the case of low dose, and the relationship is exponential when the radiation dose is greater than 60 krad SiO2. The delay signal of the FPGA circuit of the FEFET designed by the reinforcement has not been delayed again, to prove the effectiveness of ionizing radiation protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. K. Pei, X. Yang, and L. Q. Hou, J. China Acad. Electron. Info. Technol., 14, 212–217 (2019).

    Google Scholar 

  2. G. R. Yang, F. Xiao, and X. X. Fan, J. Power Supply., 16, 1–8 (2018).

    Google Scholar 

  3. W. Zhang, L.K. Liu, and H. Tang, Chinese J. Power Sources., 43, 162–164+170 (2019).

  4. R. H. Xu, D. X. Li, and J. Z. Qu. Autom. Instrum., 05, 169–171 (2017).

    Google Scholar 

  5. J. Bao, and R. X. Ou, J. Jilin Univ. (Sci. Ed.)., 56, 130–134 (2018).

    Google Scholar 

  6. T. Yan, Y. C. Zhao, and D. X. Cui, Comput. Simul., 36, 73–77 (2019).

    Google Scholar 

  7. F. Yiğiterol, H. H. Güllü, and Ö. Bayrakli., J. Electron. Mater., 47, 1–9 (2018).

    Article  Google Scholar 

  8. S. W. Kim, G. P. Khanal, and H. W. Nam, J. Appl. Phys., 122, 164105 (2017).

    Article  ADS  Google Scholar 

  9. H. Silvia, B. Davide, and T. Maher. Appl. Phys. Express., 11, 041002 (2018).

    Article  Google Scholar 

  10. S. Kumar, E. Goel, K. Singh, et al., IEEE Trans. Electron Devices., 64, 960–968 (2017).

    Article  ADS  Google Scholar 

  11. X. F. Zheng, A. C. Wang, and X. H. Hou., Chinese Phys. Lett., 34, 027301 (2017).

    Article  ADS  Google Scholar 

  12. N. N. Kononov, D. V. Davydova, and S. S. Bubenov, Semiconductors, 53, 552–565 (2019).

    Article  ADS  Google Scholar 

  13. K. Hyeuknam, B. R. Seward, and S. Benjamin, Physiol. Meas., 38, 1748–1765 (2017).

    Article  Google Scholar 

  14. W. Xin, O. Brandon, and B. Pragun, J. Forensic Sci., 63, 415–421 (2017).

    Google Scholar 

  15. G. Manjari, R. Tejas and C. S. Naik, Appl. Phys. Lett., 112, 163502 (2018).

    Article  Google Scholar 

  16. J. H. Ahn, S. J. Choi, and M. Im., Appl. Phys. Lett., 111, 113701 (2017).

    Google Scholar 

  17. Q. M. He, W. X. Mu, and H. Dong, Appl. Phys. Lett., 110, 093503 (2017).

    Article  ADS  Google Scholar 

  18. B. Frey, M. Rückert, and L. Deloch, Immunol. Rev., 280, 231–248 (2017).

    Article  Google Scholar 

  19. M. Trebitsch, J. Blaizot, and J. Rosdahl, Mon. Notic. Roy. Astron. Soc., 470, 224–239 (2017).

    Article  ADS  Google Scholar 

  20. J. Liang, H. X. Zhou, and W. J. Yang, Autom. Instrum., 7, 152–155 (2017).

    Google Scholar 

  21. C. R. Fernández–Pousa, Appl. Math. Nonlinear Sci., 3, 23–32 (2018).

  22. W. Gao, L. Zhu, Y. Guo, and K. Wang, J. Intelli. Fuzzy Syst., 33, 3153–3163 (2017).

    Google Scholar 

  23. W. Gao, and W. Wang, Colloq. Math., 149, 291–298 (2017).

    Article  MathSciNet  Google Scholar 

  24. F. Khellat, and M. B. Khormizi, Appl. Math. Nonlinear Sci., 3, 15–22 (2018).

    Article  MathSciNet  Google Scholar 

  25. G. Lakshminarayana, K. Vajravelu, G. Sucharitha, and S. Sreenadh, Appl. Math. Nonlinear Sci., 3, 41–54 (2018).

    Article  MathSciNet  Google Scholar 

  26. M. Naeem, M. K. Siddiqui, J. L. G. Guirao, and W. Gao, Appl. Math. Nonlinear Sci., 3, 209–228 (2018).

    Article  MathSciNet  Google Scholar 

  27. C. S. Elmali, T. and Ugr, Appl. Math. Nonlinear Sci., 5, No. 1, 475–478 (2020).

    Article  MathSciNet  Google Scholar 

  28. S. M. Hosamani, V. B. Awati, and R. M. Honmore, Appl. Math. Nonlinear Sci., 4, No. 2, 503–512 (2019).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Zhu.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 131–142, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Lian, D., Zhang, Q. et al. Damage Mechanism Analysis and Protection Method of Ionizing Radiation Based on Electromagnetic Radiation Characteristics. Russ Phys J 64, 1522–1535 (2021). https://doi.org/10.1007/s11182-021-02486-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02486-0

Keywords

Navigation