Skip to main content
Log in

Selection of Optimal Phase Matching Conditions for Semiconductor Nonlinear Crystals Under Cascade Pumping at 2 μm

  • Published:
Russian Physics Journal Aims and scope

Model studies of the optimal phase matching conditions are performed for the implementation of an optical parametric oscillator (OPO) in the mid-infrared range (IR) based on promising nonlinear crystals, such as: cadmium selenide CdSe, barium selenogallates BaGa4Se7 and BaGa2GeSe6, mercury thiogallate HgGa2S4 and zinc germanium phosphide ZnGeP2 (ZGP). To pump OPOs, it is necessary to use a laser source with a wavelength in the spectral range of 1.9–2.2 μm, since for the combination of physical properties of the listed above nonlinear crystals, it is optimal for achieving the maximum efficiency of parametric frequency conversion. Despite the high values of the effective nonlinear susceptibility and thermal conductivity, the transparency range of the ZGP crystal in the mid-IR range does not exceed 10.4 μm, and the achieved OPO generation wavelength range does not exceed 9 μm in the nanosecond mode. The HgGa2S4 and BaGa4Se7 crystals have lower values of nonlinear coefficients and thermal conductivity and wider transparency ranges and, as a consequence, make it possible to obtain lasing up to a wavelength of 12 μm. When using a BaGa4Se7 crystal, the lasing range can be extended up to 17 μm. The CdSe crystal has the widest transparency range. However, its other parameters do not allow solving the set tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Stepanov, Tr. Inst. Obshch. Fiz., 61, 5–47 (2005).

    Google Scholar 

  2. Y. V. Kistenev, A. V. Borisov, D. A. Kuzmin, et al., J. Biomed. Opt., 22, No. 1, 017002 (2017).

    Article  ADS  Google Scholar 

  3. K. I. Chuikova, Yu. V. Kistenev, and S. S. Gomboeva, Byul. Sib. Med., No. 6, 178–185 (2012).

  4. A. A. Karapuzikov, I. V. Sherstov, D. B. Kolker, et al., Phys. Wave Phenomena, 22, No. 3, 189–196 (2014).

    Article  ADS  Google Scholar 

  5. V. A. Serebryakov, É. V. Boĭko, N. N. Petrishchev, and A. V. Yan, J. Opt. Technol., 77, 6–17 (2010).

    Article  Google Scholar 

  6. D. Costopoulos, A. Miklós, and P. Hess, Appl. Phys. B, 75, 385–389 (2002).

    Article  ADS  Google Scholar 

  7. L. Lamard, D. Balslev-Harder, A. Peremans, Appl. Opt., 58, 250–256 (2019).

    Article  ADS  Google Scholar 

  8. I. V. Sherstov, N. Yu. Kostykova, et al., Kvant. Elektron, No. 47, 14–19 (2017).

  9. D. B. Kolker, A. A. Boyko, N. Yu. Dukhovnikova, et al., Prib. Tekh. Eksp., No. 1, 85–89 (2014).

  10. N. Y. Kostyukova, D. B. Kolker, K. G. Zenov, et al., Laser Phys. Lett., 12, No. 9, 95401 (2015).

    Article  Google Scholar 

  11. V. Petrov, G. Marchev, A. Tyazhev, et al., Opti. Eng., 52, No. 11, 117102 (2013).

    Article  ADS  Google Scholar 

  12. David N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, Springer Science + Business Media Inc. (2005).

  13. V. Petrov, Prog. Quantum Electron., 42, 1–106 (2015).

    Article  ADS  Google Scholar 

  14. K. L. Vodopyanov, J. Opt. Soc. Am. B, 16, 1579–1586 (1999).

    Article  ADS  Google Scholar 

  15. K. L. Vodopyanov, O. Levi, P. S. Kuo, et al., Opt. Lett., 29, 1912–1914 (2004).

    Article  ADS  Google Scholar 

  16. Xia Linzhong, Ruan Shuangchen, and Su Hong, Proc. SPIE 7276, Photonics and Optoelectronics Meetings (POEM) 2008: Laser Technology and Applications (2009).

    Google Scholar 

  17. G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, Opt. Lett., 27, 1336–1338 (2002).

    Article  ADS  Google Scholar 

  18. A. Boyko, V. Badikov, G. Shevyrdyaeva, et al., OSA Technical Digest (online) (Opt. Soc. Am., 2018).

  19. A. A. Boyko, G. M. Marchev, V. Petrov, et al., Opt. Express., 23, 33460–33465 (2015).

    Article  ADS  Google Scholar 

  20. L. Wang, A. A. Boyko, A. Schirrmacher, et al., Opt. Lett., 44, Iss. 23, 5659–5662 (2019).

  21. M. Henriksson, L. Sjöqvist, V. Pasiskevicius, et al., Appl. Phys. B, 86, 497–501 (2007).

    Article  ADS  Google Scholar 

  22. N. P. Barnes, K. E. Murray, and G. H. Watson, Adv. Solid State Lasers of OSA Proceedings Series (Opt. Soc. Am., 1992).

  23. J. Yao, W. Yin, K. Feng, et al., J. Cryst. Growth., 346, Iss. 1, 1–4 (2012).

  24. V. V. Badikov, D. V. Badikov, V. B. Laptev, et al., Opt. Mater. Express., 6, 2933–2938 (2016).

    Article  ADS  Google Scholar 

  25. V. V. Badikov, N. V. Kuz’min, V. B. Laptev, et al., Kvant. Elektron., 34, No. 5, 451–456 (2004).

  26. Kato Kiyoshi, Miyata Kentaro, V. V. Badikov, and V. Petrov, Appl. Opt., 57, 7440–7443 (2018).

  27. Gopal C. Bhar, Appl. Opt., 15, 1–307 (1976).

    Article  Google Scholar 

  28. K. Kato, V. Petrov, and N. Umemura. Appl. Opt., 55, No. 12, 3145–3148 (2016).

    Article  ADS  Google Scholar 

  29. K. Kato, K. Miyata, and V. Petrov, Appl. Opt., 56, No. 11, 2978 (2017).

    Article  ADS  Google Scholar 

  30. D. E. Zelmon, E. A. Hanning, and P. G. Schunemann, J. Opt. Soc. Am. B, 18, 1307–1310 (2001).

    Article  ADS  Google Scholar 

  31. Kato Kiyoshi, V. V. Badikov, Wang Li, et al., Opt. Lett., 45, 2136–2139 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Boyko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 126–130, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyko, A.A., Kostyukova, N.Y., Erushin, E.Y. et al. Selection of Optimal Phase Matching Conditions for Semiconductor Nonlinear Crystals Under Cascade Pumping at 2 μm. Russ Phys J 64, 1517–1521 (2021). https://doi.org/10.1007/s11182-021-02485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02485-1

Keywords

Navigation