Skip to main content
Log in

Mathematical Modeling of the Melting Process of Silicate Materials in a Plasma Reactor

  • Published:
Russian Physics Journal Aims and scope

Results of mathematical modeling of the melting process of silicate materials in a plasma reactor are presented. Quartz sand containing up to ~98 wt% SiO2 was used as a model material. It has been found that in the initial period of time at the temperature Tf = 2500 K of the air-plasma medium, the gas temperature near the phase interface is below the melting temperature. As a result of heat exchange in the gas phase, the thermal energy is transferred first from the central and then from the upper layers of the material to the phase interface. If the thermal energy in the gas phase turns out to be sufficient for the phase transition, then melting begins after some time. When the initial temperature increased to Tf = 3000 K, melting begins almost instantly (tm = 0.2 s). In this case, the constant temperature slightly exceeding the melting temperature is established at the phase interface. It has been showed that the velocity of the melting front propagation is determined by the initial gas phase temperature and the thermal and physical characteristics of the material, but weakly depends on the thickness of the filling material layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Poerschke, J. H. Shaw, N. Verma, et al., Acta Mater., 145, 451–461 (2018).

    Article  ADS  Google Scholar 

  2. G. S. Sborshchikov and A. Y. Terekhova, Refractor Indastr. Ceram., 57, No. 6, 574–577 (2017).

    Article  Google Scholar 

  3. A. O. Davidenko, V. E. Sokol’skii, A. S. Roic, and I. A. Goncharov, Inorg. Mat., 50, No. 12, 1289–1296 (2014).

    Article  Google Scholar 

  4. H. Hasegawa, H. Ohta, H. Shibata, and Y. Waseda, High Temp. Mater. Proc., 31, Nos. 4–5, 491–499 (2013).

    Google Scholar 

  5. I. S. Peretyazhko, E. A. Savina, N. S. Karmanov, and A. S. Dmitrieva, Retrology, 26, No. 4, 389–413 (2018).

    Article  Google Scholar 

  6. Z. Ma, X. Tian, H. Liao, et al., J. Clean. Prod., 171, 464–481 (2018).

    Article  Google Scholar 

  7. T. Bristogianni, F. Oikonomopoulou, R. Yu, et al., Glass Struct. Eng., 5, No. 3, 445–487 (2020).

    Article  Google Scholar 

  8. S. A. Karpov, V. G. Butov, V. A. Solonenkov, and V. N. Brendakov, Izv. Vyssh. Uchebn. Zaved. Fiz., 64, No. 2-2, 40–45 (2021).

    Article  Google Scholar 

  9. V. A. Vlasov, V. V. Shekhovtsov, O. G. Volokitin, et al., Russ. Phys. J., 61, No. 4, 708–714 (2018).

    Article  Google Scholar 

  10. O. G. Volokitin and V. V. Shekhovtsov, J. Constr. Archit., 60, No. 1, 144–148 (2017).

    Google Scholar 

  11. B. M. Cetegen and S. Basu, J. Therm. Spray Technol., 18, 769–793 (2009).

    Article  ADS  Google Scholar 

  12. M. Aghasibeig, F. Tarasi, R. S. Lima, et al., J. Therm. Spray Technol., 28, 1579–1605 (2019).

    Article  ADS  Google Scholar 

  13. P. Fauchais, M. Vardelle, A. Vardelle, and S. Goutier, J. Therm. Spray Technol., 24, 1120–1129 (2015).

    Article  ADS  Google Scholar 

  14. Xiuquan Cao, Chao Li, Lin Chen, and Bo Huang, IEEE Trans. Plasma Sci., 48, No. 4, 961–968 (2020).

    Article  ADS  Google Scholar 

  15. V. A. Vlasov, O. G. Volokitin, G. G. Volokitin, et al., J. Eng. Phys. Thermophys., 89, No. 1, 143–147 (2016).

    Article  Google Scholar 

  16. V. V. Shekhovtsov, V. A. Vlasov, G. G. Volokitin, and O. G. Volokitin, Izv. Vyssh.Uchebn. Zaved. Fiz., 59, No. 9/3, 305–308 (2016).

    Google Scholar 

  17. O. V. Matvienko, J. Eng. Phys. Thermophys., 87, No. 4, 908–918 (2014).

    Article  Google Scholar 

  18. V. A. Arkhipov, O. V. Matvienko, and V. F. Trofimov, Comb. Explos. Shock Waves, 41, No. 2, 26–37 (2005).

    Article  Google Scholar 

  19. E. Javierre-Pérez, Literature study: Numerical method for solving Stefan problems, Report 03–16, Delft University of Technology, Delft (2003).

  20. S. Patankar, Numerical Methods for Solving Problems of Heat Transfer and Liquid Dynamics [Russian translation], Energoatomizdat, Moscow (1984).

  21. K. Johnson, Numerical Methods in Chemistry [Russian translation], Mir, Moscow (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shekhovshov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 57–64, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhovshov, V.V., Volokitin, O.G. & Matvienko, O.V. Mathematical Modeling of the Melting Process of Silicate Materials in a Plasma Reactor. Russ Phys J 64, 1443–1450 (2021). https://doi.org/10.1007/s11182-021-02477-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02477-1

Keywords

Navigation