Skip to main content
Log in

Excitation and Quencing of Rotational Energy Levels of the О3 Ozone Molecule by Collisions with Noble Gas Atoms (Ar and He)

  • Published:
Russian Physics Journal Aims and scope

The scattering cross sections of rotational excitations of O3 by collisions with noble gas atoms (Ar and He) have been calculated using the two-body scheme implemented in the MOLSCAT2020 package. All O3 energy levels up to Jmax = Kmax = 5 and Jmax = Kmax = 7 that correspond to 18 and 32 coupled channel equations have been included. Dependences of the scattering cross sections on the collision energy are analyzed, and the most probable excited O3 rotational states are determined. The rate coefficients are calculated at temperatures of 5–300 K. The construction of the radial part of the angular coefficients of the interaction potential is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Q. Gao and R. A. Marcus, J. Chem. Phys., 116, 137 (2002).

    Article  ADS  Google Scholar 

  2. Y. Q. Gao and R. A. Marcus, Science, 293, 259–263 (2001).

    Article  ADS  Google Scholar 

  3. A. J. C. Varandas, A. A. C. C. Pais, J. M. C. Marques, and W. Wang, Chem. Phys. Lett., 249, 264–271 (1996).

    Article  ADS  Google Scholar 

  4. T. A. Baker and G. I. Gellene, J. Chem. Phys., 117, 7603–7613 (2002).

    Article  ADS  Google Scholar 

  5. M.V. Ivanov, S. Yu. Grebenshchikov, and R. Schinke, J. Chem. Phys., 120,10015–10024 (2004).

    Article  ADS  Google Scholar 

  6. R. Schinke and P. Fleurat-Lessard, J. Chem. Phys., 122, 094317 (2005).

  7. M. V. Ivanov and R. Schinke, Mol. Phys., 108 (3–4), 259–268 (2010).

    Article  ADS  Google Scholar 

  8. D. Charlo and D. C. Clary, J. Chem. Phys., 117, 1660–1672 (2002).

    Article  ADS  Google Scholar 

  9. D. Charlo and D. C. Clary, J. Chem. Phys., 120, 2700–2707 (2004).

    Article  ADS  Google Scholar 

  10. T. Xie and J. M. Bowman, Chem. Phys. Lett., 412, 131–134 (2005).

    Article  ADS  Google Scholar 

  11. S. Yu. Grebenshchikov and R. Schinke, J. Chem. Phys., 131 (18), 181103 (2009).

  12. M. V. Ivanov and D. Babikov, J. Chem. Phys., 136 (18), 184304 (2012).

  13. A. Teplukhin and D. Babikov, Phys. Chem. Chem. Phys., 18 (28), 19194–19206 (2016).

    Article  Google Scholar 

  14. H. Hippler, R. Rahn, and J. Troe, J. Chem. Phys., 93, 6560–6569 (1990).

    Article  ADS  Google Scholar 

  15. S. M. Anderson, D. Hülsebusch, and K. Mauersberger, J. Chem. Phys., 107, 5385–5392 (1997).

    Article  ADS  Google Scholar 

  16. K. Mauersberger, B. Erbacher, D. Krankowsky, et al., Science, 283 (5400), 370–372 (1999).

    Article  ADS  Google Scholar 

  17. M. H. Thiemens, Science, 283 (5400), 341–345 (1999).

    Article  ADS  Google Scholar 

  18. V. G. Tyuterev, R. V. Kochanov, S. A. Tashkun, et al., J. Chem. Phys., 139, 134307 (2013).

  19. R. Dawes, P. Lolur, A. Li, et al., J. Chem. Phys., 139, 201103 (2013).

  20. Z. Sun, D. Yu, W. Xie, et al., J. Chem. Phys., 142, 174312 (2015).

  21. S. A. Lahankar, J. Zhang, T. K. Minton, et al., J. Phys. Chem. A, 120 (27), 5348–5359 (2016).

    Article  Google Scholar 

  22. P. Honvault, G. Guillon, R. Kochanov, and V. Tyuterev, J. Chem. Phys., 149, 214304 (2018).

  23. G. Guillon, P. Honvault, R. Kochanov, and Vl. Tyuterev, J. Phys. Chem. Lett., 9 (8), 1931–1936 (2018).

  24. C. Janssen, J. Guenther, K. Mauersberger, and D. Krankowsky, Phys. Chem. Chem. Phys., 3, 4718–4721 (2001).

    Article  Google Scholar 

  25. D. Babikov, D. K. Kendrick, R. B. Walker, et al., J. Chem. Phys., 119, 2577 (2003).

    Article  ADS  Google Scholar 

  26. D. Lapierre, A. Alijah, R. Kochanov, et al., Phys. Rev. A, 94 (4), 042514 (2016).

  27. C. H. Yuen, D. Lapierre, F. Gatti, et al., J. Phys. Chem. A, 123 (36), 7733–7743 (2019).

    Article  Google Scholar 

  28. O. V. Egorov, F. Maguiere, and Vl. G. Tyuterev, Russ. Phys. J., 62, No. 10, 1917–1925 (2019).

  29. V. Kokoouline, D. Lapierre, A. Alijah, and Vl. Tyuterev, Phys. Chem. Chem. Phys., 22, 15885–15899 (2020).

  30. I. Gayday, A. Teplukhin, B. K. Kendrick, and D. Babikov, J. Chem. Phys., 152, 144104 (2020).

  31. E. Starikova, A. Barbe, and Vl. G. Tyuterev, J. Quant. Spectrosc. Radiat. Transfer, 232, 87–92 (2019).

  32. S. Mikhailenko and A. Barbe, J. Quant. Spectrosc. Radiat. Transfer, 244, 106823 (2020).

  33. A. Barbe, S. Mikhailenko, E. Starikova, et al., J. Quant. Spectrosc. Radiat. Transfer, 130, 172–190 (2013).

    Article  ADS  Google Scholar 

  34. S. Vasilchenko, A. Barbe, E. Starikova, et al., Phys. Rev. A, 102, 052804 (2020).

  35. S. Sur, S. A. Ndengué, E. Quintas-Sánchez, et al., Phys. Chem. Chem. Phys., 22, 1869–1880 (2020).

  36. S. Green, J. Chem. Phys., 64, 3463 (1976).

    Article  ADS  Google Scholar 

  37. J. M. Bowman and S. C. Leasure, J. Chem. Phys., 66, 288–295 (1977).

    Article  ADS  Google Scholar 

  38. G. A. Parker and R. T. Pack, J. Chem. Phys., 68, 1585 (1978).

    Article  ADS  Google Scholar 

  39. D. C. Clary, J. Phys. Chem., 91 (7), 1718–1727 (1987).

    Article  Google Scholar 

  40. S. Green, B. Pan, and J. M. Bowman, J. Chem. Phys., 102, 8800 (1995).

    Article  ADS  Google Scholar 

  41. T. R. Phillips, S. Maluendes, and S. Green, J. Chem. Phys., 102, 6024 (1995).

    Article  ADS  Google Scholar 

  42. J. M. Hutson and R.-C. Sueur, Comput. Phys. Commun., 241, 9–18 (2019).

    Article  ADS  Google Scholar 

  43. O. V. Egorov and A. K. Tretyakov, Russ. Phys. J., 63, No. 4, 607–615 (2020).

    Article  Google Scholar 

  44. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific Publishing, Singapore (1988).

    Book  Google Scholar 

  45. T. R. Phillips, S. Maluendes, A. D. McLean, and S. Green, J. Chem. Phys., 101, 5824 (1994).

    Article  ADS  Google Scholar 

  46. John Burkardt’s Home Page, URL: https://people.sc.fsu.edu/~jburkardt/ (2021).

  47. T.-S. Ho and H. Rabitz, J. Chem. Phys., 104, 2584 (1996).

    Article  ADS  Google Scholar 

  48. D. Koner and M. Meuwly, J. Chem. Theory Comput., 16 (9), 5474–5484 (2020).

    Article  Google Scholar 

  49. D. E. Manolopoulos, J. Chem. Phys., 85, 6425 (1986).

    Article  ADS  Google Scholar 

  50. Y. L. Babikov, S. N. Mikhailenko, A. Barbe, and V. G. Tyuterev, J. Quant. Spectrosc. Radiat. Transfer, 145, 169–196 (2014).

    Article  ADS  Google Scholar 

  51. M. J. Van Vleet, A. J. Misquitta, A. J. Stone, et al., J. Chem. Theory Comput., 12 (8), 3851–3870 (2016).

    Article  Google Scholar 

  52. A. A. Kutepov, H. Oelhaf, and H. Fischer, J. Quant. Spectrosc. Radiat. Transfer, 57 (3), 317–339 (1997).

    Article  ADS  Google Scholar 

  53. M. López-Puertas and F. W. Taylor, Non-LTE Radiative Transfer in the Atmosphere, World Scientific Publishing Company, Singapore (2001).

    Book  Google Scholar 

  54. T. Yamada, L. Rezac, R. Larsson, et al., A&A, 619, A181 (2018).

    Article  ADS  Google Scholar 

  55. R. D. Levine, Molecular Reaction Dynamics, Cambridge University Press (2005).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Egorov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 162–170, July, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, O.V., Tretyakov, A.K. Excitation and Quencing of Rotational Energy Levels of the О3 Ozone Molecule by Collisions with Noble Gas Atoms (Ar and He). Russ Phys J 64, 1363–1372 (2021). https://doi.org/10.1007/s11182-021-02462-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02462-8

Keywords

Navigation