Skip to main content

Advertisement

Log in

Catalytic Kinetics and CFD Simulation of Multi-Stage Combined Removal of Acrylonitrile Tail Gas

  • Published:
Russian Physics Journal Aims and scope

There is no kinetic data and rate equation that can be used directly for catalytic combustion of acrylonitrile tail gas, which causes a need for a multi-stage catalytic kinetic model of collective removal of acrylonitrile tail gas. For the actual application, affected by the internal and external diffusion, we propose a multi-stage combined catalytic kinetic study and a CFD simulation analysis of a collective removal of acrylonitrile tail gas. The reaction network is solved by the matrix transformation. A possible reaction path in the multi-stage combined catalytic reaction network of a collective removal of acrylonitrile tail gas is identified. The materials are used in accordance with the positive carbon ion reaction. For a quantitative calculation of the product distribution, the reaction parameters and dynamic factors are required. These are calculated and determined by the Studio software and the genetic algorithm. An AutoGrid5 automatic grid generator embedded in the Fine/TurboTM software package is used to generate the CFD simulation network, and an iterative algorithm is used to calculate the limit value of the CFD simulation. An S-A model is used in the CFD simulation platform to obtain a modified value of the dynamic mathematical model, and the dynamic factors and parameters are brought into it to establish the CA mathematical model of the multi-stage combined catalytic kinetics of the removal of CO from olefine and nitrile tail gas. The experimental results show that the internal and external diffusion effects are observed in the same experimental device and at the same process parameters. The multi-stage combined catalytic kinetic model of a collective removal of acrylonitrile tail gas uses a 10-20 mesh catalyst; the retention time of acrylonitrile tail gas is less than 4.62 s, neither internal nor external diffusion affect the collective removal of acrylonitrile tail gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Peitz, M. Elsener, and O. Kröcher, Chem-Ing-Tech., 90, No. 6, 795–802 (2018).

    Article  Google Scholar 

  2. J. J. Liu, A. Pablo, García–Salaberri, Iryna. and V. Zenyuk. Trans. Porous. Media., 128, No. 2, 363–384 (2019).

  3. O. V. Potapenko, M. S. Khudyakov, E. O. Altynkovich, et al., Kinet. Catal–Engl. Tr., 60, No. 1, 74–86 (2019)

  4. M. Sa’at, M. Yarmohammadi, M. Z. Pedram, et al., Int. J. Chem. Kinet., 51, No. 5, 337–345 (2019).

  5. E. P. Zhil’tsova, M. R. Ibatullina, S. S. Lukashenko, et al., Kinet. Catal–Engl. Tr., 61, No. 2, 269–275 (2020).

  6. J. J. Mao, C. T. He, J. J. Pei, et al., Nature Commun., 9, No. 1, 6430–6437 (2018).

    Google Scholar 

  7. R. Shi, Y. Zhang, B. Yuan, Z. Zheng, et al., Kinet. Catal., 60, No. 2, 205–211 (2019).

    Article  Google Scholar 

  8. A. A. Dyusembaeva, and V. I. Vershinin, Kinet Catal, 60, No. 1, 106–111 (2019).

  9. P. V. Markov, A. V. Bukhtiyarov, I. S. Mashkovsky, et al., Kinet Catal., 60, No. 6, 842–850 (2019).

    Article  Google Scholar 

  10. S. Ghadamgahi, Kinet Catal., 61, No. 2, 291–298 (2020).

    Article  Google Scholar 

  11. B. Anicic, B. Lu, W. G. Lin, et al., Can. J. Chem. Eng., 98, No. 1, 412–420 (2020).

    Article  Google Scholar 

  12. N. M. Hariharan, and P. Sivashanmugam, High. Temp., 56, No. 2, 309–311 (2018).

    Article  Google Scholar 

  13. M. W. Hlawitschka, J. Schäfer, L. Jöckel, et al., J. Chem. Eng. Jpn., 51, No. 4, 356–365 (2018).

    Article  Google Scholar 

  14. L. C. Li, N. Chen, K. F. Xiang, et al., Can. J. Chem. Eng., 96, No. 8, 1837–1848 (2018).

    Article  Google Scholar 

  15. T. C. L. Oliveira, A. T. P. Neto, and J. J. N. Alves. Can, J. Chem. Eng., 97, No. 2, 465–476 (2019).

    Google Scholar 

  16. A. M. Dashliborun, and F. Larachi, AICHE. J., 65, No. 1, 385–397 (2019).

    Article  Google Scholar 

  17. K. Ghasemzadeh, R. Zeynali, F. Bahadori, et al., Int. J. Hydrogen. Energ., 43, No. 15, 7675–7683 (2018).

    Article  Google Scholar 

  18. Y. F. Sun, Z. T. Liu, Z. H. Fei, et al., Spr. Berlin Heidelberg., 26, No. 9, (2019).

  19. S. M. R. Paran, H. Vahabi, M. Jouyandeh, et al., J. Appl. Polym. Sci., 136, No. 20, 47483 (2019).

    Article  Google Scholar 

  20. K. Narynbek Ulu, B. Huneau, E. Verron, et al., Fatigue Fract. Eng. Mater. Struc., 42, No. 7, 1578–1594 (2019).

  21. E. I. Eskitaclolu, M. B. Akta, H. M. Baskonus, Appl. Math. Nonlinear Sci., 4, No. 1, 93–100 (2019).

    Article  Google Scholar 

  22. T. Li, L. Qiao, Y. Ding, Appl. Math. Nonlinear Sci., 5, No. 1, 121–138 (2020).

    Article  MathSciNet  Google Scholar 

  23. E. Pikin, H. Yuksekkaya, Appl. Math. Nonlinear Sci., 5, No. 1, 195–210 (2020).

    Article  MathSciNet  Google Scholar 

  24. S. K. Yadav, Appl. Math. Nonlinear Sci., 4, No. 1, 113–128 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Du.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 115–125, July, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Liu, Q. & Yang, Y. Catalytic Kinetics and CFD Simulation of Multi-Stage Combined Removal of Acrylonitrile Tail Gas. Russ Phys J 64, 1303–1319 (2021). https://doi.org/10.1007/s11182-021-02456-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02456-6

Keywords

Navigation