Skip to main content

Advertisement

Log in

Structure Formation in Equimolar Mixture of HfC–ZrC–TiC–NbC Carbides

  • Published:
Russian Physics Journal Aims and scope

Structure formation during hot pressing of an equimolar powder mixture HfC–ZrC–TiC–NbC in the temperature range from 1400 to 1900°C is investigated. It is found that a monophase substitutional solid solution (Hf, Zr, Ti, Nb)C based on hafnium carbide forms at a temperature of 1700°C. It is shown that the formation of the ceramic solid solution (Hf, Zr, Ti, Nb)C proceeded in many stages with the formation of intermediate two- and three-component ceramic solid solutions (Hf, Zr)C, (Nb, Zr)C, and (Hf, Zr, Ti)C and their subsequent dissolution. The resulting ceramic multicomponent substitutional solid solution (Hf, Zr, Ti, Nb)C has improved mechanical properties compared to similar properties of initial carbides: E = (616 ± 77) GPa, H = (36 ± 8) GPa, and K1C = ( 3.4 ± 0.5) MPa ∙ m1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Yeh, S.-K. Chen, S.-J. Lin, et al., Adv. Eng. Mater., 6, No. 5, 299–303 (2004).

    Article  Google Scholar 

  2. R. A. Andrievskii, Usp. Fiz. Nauk, 187, Vyp. 3, 296–310 (2017).

  3. J. W. Yeh, JOM, 65, No. 12, 1759–1771 (2013).

    Article  Google Scholar 

  4. Y. Zhang, T. T. Zuo, Z. Tang, et al., Prog. Mater. Sci., 61, 1–93 (2014).

    Article  Google Scholar 

  5. J. W. Yeh, JOM, 67, No. 10, 2254–2261 (2015).

    Article  Google Scholar 

  6. B. S. Murty, High-Entropy Alloys, Elsevier (2019).

  7. C. M. Rost, E. Sachet, T. Borman, et al., Nat. Commun., 6, No. 1, 1–8 (2015).

    Article  Google Scholar 

  8. Y. Dong, K. Ren, Y. Lu, et al., J. Eur. Ceram. Soc., 39, No. 7, 2574–2579 (2019).

    Article  Google Scholar 

  9. J. Chen, W. Liu, J. Liu, et al., J. Phys. Chem. C, 123, No. 29, 17735–17744 (2019).

    Article  Google Scholar 

  10. Z. Zhao, H. Xiang, F. Z. Dai, et al., J. Mater. Sci. Technol., 35, No. 10, 2227–2231 (2019).

    Article  Google Scholar 

  11. J. Zhou, J. Zhang, F. Zhang, et al., Ceram. Int., 44, No. 17, 22014–22018 (2018).

    Article  Google Scholar 

  12. A. Sarkar, L. Velasco, D. Wang, et al., Nat. Commun., 9, No. 1, 1–9 (2018).

    Article  Google Scholar 

  13. Y. Zheng, Y. Yi, M. Fan, et al., Energy Storage Mater., 23, 678–683 (2019.

    Article  Google Scholar 

  14. Q. Wang, A. Sarkar, D. Wang, et al., Energy Environ. Sci., 12, No. 8, 2433–2442 (2019).

    Article  Google Scholar 

  15. B. Ye, T. Wen, D. Liu, and Y. Chu, Corros. Sci., 153, 327–332 (2019).

    Article  Google Scholar 

  16. J. W. Yeh, Y. L. Chen, S. J. Lin, and S. K. Chen, Mater. Sci. Forum. Trans Tech Publications Ltd, 560, 1–9 (2007).

    Google Scholar 

  17. A. J. Wright, Q. Wang, C. Huang, et al., J. Eur. Ceram. Soc., 40, No. 5, 2120– 2129 (2020).

    Article  Google Scholar 

  18. A. J. Wright and J. Luo, J. Mater. Sci., 55, No. 23, 9812–9827 (2020).

    Article  ADS  Google Scholar 

  19. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett., 1, No. 1, 13–16 (1982).

  20. H. Bittermann and P. Rogl, J. Phase Equilibria., 23, 218–235 (2002).

    Article  Google Scholar 

  21. O. Adjaoud, G. Steinle-Neumann, B. P. Burton, and A. Van de Walle, Phys. Rev. B, 80, No. 13, 134112 (2009).

  22. X. G. Wang, J. X. Liu, Y. M. Kan, and G. J. Zhang, J. Eur. Ceram. Soc., 32, No. 8, 1795–1802 (2012).

    Article  Google Scholar 

  23. Y. Li, H. Katsui, and T. Goto, Ceram. Int., 41, No. 10, 14258–14262 (2015).

    Article  Google Scholar 

  24. S. V. Rempel and A. I. Gusev, Phys. Chem. Chem. Phys., 22, No. 26, 14918–14931 (2020).

    Article  Google Scholar 

  25. E. Castle, T. Csanadi, S. Grasso, et al., Sci. Rep., 8, No. 1, 1–12 (2018).

    Article  Google Scholar 

  26. A. A. Rempel and B. R. Gelchinskii, Izv. Vyssh. Uchebn. Zaved. Chern. Metallurg., 63, No. 3–4, 248–253 (2020).

    Article  Google Scholar 

  27. C. Oses, C. Toher, and S. Curtarolo , Nat. Rev. Mater., 1 – 15 (2020).

  28. I. V. Kireeva, Yu. I. Chumlyakov, Z. V. Pobedennaya, et al., Russ. Phys. J., 63, No. 1, 134 – 141 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Wang.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 18–23, July, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Mirovoy, Y.A., Burlachenko, A.G. et al. Structure Formation in Equimolar Mixture of HfC–ZrC–TiC–NbC Carbides. Russ Phys J 64, 1191–1197 (2021). https://doi.org/10.1007/s11182-021-02443-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02443-x

Keywords

Navigation