Skip to main content
Log in

Domain Structure and Magnetization Reversal in Multilayer Structures Consisting of Thin Permalloy Films Separated with Nonmagnetic Interlayers

  • Published:
Russian Physics Journal Aims and scope

Using numerical micromagnetic modeling, we have investigated the development of domain structure and magnetization reversal in multilayer thin-film structures. The permalloy (Ni80Fe20) magnetic layers had the inplane uniaxial and perpendicular magnetic anisotropy. We found that as the thickness of nonmagnetic interlayers decreases, the in-plane configuration of magnetic moments in the permalloy layers transforms from a single domain state to stripe domains, which is caused by the increase of magnetostatic interaction between layers. In structures with “thick” interlayers, even weak magnetostatic interaction enforces the neighboring single domain permalloy layers to have opposite orientations of magnetic moments. The saturation field of such samples increases linearly with the number of layers. By analyzing the dynamic characteristics of multilayers, we determined the optimum number of layers ensuring the maximum conversion efficiency of wideband microwave microstrip sensors of weak magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Herzer, Acta Mater., 61, 718–734 (2013).

    Article  ADS  Google Scholar 

  2. E. C. Stoner and E. P. Wohlfarth, Phil. Trans. Roy. Soc., A240, 599–644 (1948).

    ADS  Google Scholar 

  3. J. P. Volkerts, Magnetic Thin Films: Properties, Performance and Applications, Nova Science Publishers (2011).

    Google Scholar 

  4. J. Petzold, J. Magn. Magn. Mater., 242–245, 84–89 (2002).

    Article  Google Scholar 

  5. I. Fergen, K. Seemann, A. V. D. Weth, and A. Schüppen, J. Magn. Magn. Mater., 242–245, 146–151 (2002).

    Article  ADS  Google Scholar 

  6. S. Tumanski, Handbook of Magnetic Measurements, CRC Press (2011).

  7. N. Smith and P. Arnett, IEEE Trans. Magn., 38, 32–37 (2002).

    Article  ADS  Google Scholar 

  8. W. F. Egelhoff, J. Bonevich, P. Pong, et al., J. Appl. Phys., 105, 013921 (2009).

    Article  ADS  Google Scholar 

  9. C. Tannous and J. Gieraltowski, J. Mater. Sci. Mater. Electron., 15, 125–133 (2004).

    Article  Google Scholar 

  10. A. N. Babitskii, B. A. Belyaev, G. V. Skomorokhov, et al., Tech. Phys. Lett., 41, 324–327 (2015).

    Article  ADS  Google Scholar 

  11. A. N. Babitskii, B. A. Belyaev, N. M. Boev, and A. V. Izotov, IEEE Sensors 2017: Conf. Proc. 316–318 (2017).

  12. N. Saito, H. Fujiwara, and Y. Sugita, J. Phys. Soc. Jpn., 19, 1116–1125 (1964).

    Article  Google Scholar 

  13. Y. Sugita, H. Fujiwara, and T. Sato, Appl. Phys. Lett., 10, 229–231 (1967).

    Article  ADS  Google Scholar 

  14. J. Wei, Z. Zhu, H. Feng, et al., J. Phys. D: Appl. Phys., 48, 465001 (2015).

    Article  Google Scholar 

  15. D. Cao, L. Pan, X. Cheng, et al., J. Phys. D: Appl. Phys., 51, 025001 (2018).

    Article  ADS  Google Scholar 

  16. Y. Murayama, J. Phys. Soc. Jpn., 21, 2253–2266 (1966).

    Article  Google Scholar 

  17. A. V. Svalov, I. R. Aseguinolaza, A. Garcia-Arribas, et al., IEEE Trans. Magn., 46, 333–336 (2010).

    Article  ADS  Google Scholar 

  18. P. N. Solovev, A. V. Izotov, and B. A. Belyaev, J. Magn. Magn. Mater., 429, 45–51 (2017).

    Article  ADS  Google Scholar 

  19. N. Kataoka, T. Shima, and H. Fujimori, J. Appl. Phys., 70, 6238 (1991).

    Article  ADS  Google Scholar 

  20. K. Ikeda, K. Kobayashi, and M. Fujimoto, J. Appl. Phys., 92, 5395–5400 (2002).

    Google Scholar 

  21. H. Greve, C. Pochstein, H. Takele, et al., Appl. Phys. Lett., 89, 242501 (2006).

    Article  ADS  Google Scholar 

  22. B. A. Belyaev, A. V. Izotov, and An. A. Leksikov, Phys. Solid State, 52, 1664–1672 (2010).

  23. B. A. Belyaev and A. V. Izotov, Phys. Solid State, 55, 2491–2500 (2013).

    Article  ADS  Google Scholar 

  24. A. V. Izotov, B. A. Belyaev, P. N. Solovev, and N. M. Boev, Phys. B, 556, 42–47 (2019).

    Article  ADS  Google Scholar 

  25. K. M. Lebecki, M. J. Donahue, and M. W. Gutowski, J. Phys. D: Appl. Phys., 41, 175005 (2008).

    Article  Google Scholar 

  26. B. A. Belyaev, A. V. Izotov, G. V. Skomorokhov, and P. N. Solovev, Mater. Res. Express., 6, 116105 (2019).

    Article  ADS  Google Scholar 

  27. B. A. Belyaev, A. V. Izotov, G. V. Skomorokhov, and P. N. Solovev, Russ. Phys. J., 63, No. 5, 837–843 (2020).

    Article  Google Scholar 

  28. P. N. Solovev, A. V. Izotov, B. A. Belyaev, and N. M. Boev, Phys. B, 604, 412699 (2021).

    Article  Google Scholar 

  29. A. Hubert and R. Schäfer, Magnetic Domains, Springer, Berlin (1998).

    Google Scholar 

  30. A. N. Babitskii, B. A. Belyaev, N. M. Boev, et al., Instrum. Exp. Tech., 59, 425–432 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Belyaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 170–176, June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, B.A., Boev, N.M., Izotov, A.V. et al. Domain Structure and Magnetization Reversal in Multilayer Structures Consisting of Thin Permalloy Films Separated with Nonmagnetic Interlayers. Russ Phys J 64, 1160–1167 (2021). https://doi.org/10.1007/s11182-021-02436-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02436-w

Keywords

Navigation