Skip to main content
Log in

Influence of Geometric Tooth Shape Parameters of Labyrinth Seals on the Flow Law and the Algorithm for Designing Straight Grate Teeth

  • Published:
Russian Physics Journal Aims and scope

In view of the fact that the traditional method does not summarize flow rules through straight labyrinth seals, there is no rule to summarize the sealing effects of the labyrinth seals with different specifications. Therefore, it is proposed to study the influence of the geometric tooth profile parameters on the flow law and the algorithm for designing the labyrinth seals. According to the geometric tooth profile parameters, 22 tooth profile test models of straight tooth grating have been designed. Experimental results have shown that the flow coefficient increases with the seal clearance and the tooth tip thickness. It is proportional to the tooth height, pitch, and the number of teeth. When compressed air passes through the labyrinth seals, to improve the sealing effect, attention should be focused on the design of the first and last teeth. This provides a favorable basis for the study of the flow law in the labyrinth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Zhu, Y. G. Lu, et al., At. Energy Sci. Tech., 50, No. 7, 1216–1223 (2016).

    Google Scholar 

  2. H. L. Qiao, J. Y. Yu, and C. Wang, J. China Acad. Electron. Inf. Tech., 11, No. 6, 574–576 (2016).

    Google Scholar 

  3. A. Soni and S. N. Singh, Sol. Energy, 148, 149–156 (2017).

    Article  ADS  Google Scholar 

  4. T. D. Melo, J. N. V. Goulart, C. T. M. Anflor, et al., Eur. J. Mech. B Fluids, 62, No. 3–4, 130–138 (2017).

    Article  Google Scholar 

  5. H. Ye, X. S. Ge, S. Y. Zhuang, et al., Acta Energ. Sol. Sin., 24, No. 1, 27–31(2003).

    Google Scholar 

  6. B. Zhang, J. J. Li, W. K. Li, et al., J. Comput. Theor. Nanosci., 14, No. 3, 1528–1534 (2017).

    Article  Google Scholar 

  7. M. J. Avanaki, and A. A. A. Jeddi, J. Text. Inst. Proc. Abstr., 108, No. 3, 418–427 (2016).

    Article  Google Scholar 

  8. M. K. Guo, Q. H. Wang, J. Z. Yang, et al., J. Yangtze Univ. (Nat. Sci. Ed.), 12, No. 32, 55–60 (2015).

  9. F. Tong, L. Zhang, R. Hua, et al., J. Propuls. Tech., 36, No. 1, 119–123 (2015).

    Google Scholar 

  10. Z. H. Yang, H. J. Gong, Y. J. Li, et al., China Sciencepaper, 11, No. 5, 527–532 (2016).

    Google Scholar 

  11. L. Cui, G. Q. Li, G. Han, et al., Gas Turb. Technol., 30, No. 1, 41–47 (2017).

    Google Scholar 

  12. X. Fu, Y. H. Cao, Y. B. Zhang, et al., Acta Armamentarii, 38, No. 4, 824–832 (2017).

    Google Scholar 

  13. B. Zhang, H. H. Ji, F. Q. Du, et al., J. Propuls. Technol., 37, No. 2, 304–310 (2016).

    Google Scholar 

  14. H. F. Cui, S. N. Liao, and Q. W. Gao, Intern. Combust. Eng., 34, No. 6, 1–4 (2016).

    Google Scholar 

  15. H. G. Wang, and C. J. Su, J. Netshape Forming Engineering., 25, No. 1, 66–70 (2017).

    Google Scholar 

  16. F. Yang, H. S. Zhu, S. Q. Jiao, et al., West-China Explor. Eng., 28, No. 5, 47–49 (2016).

    Google Scholar 

  17. L. Teng, Y. X. Li, M. Liu, et al., Oil Gas Storage Transp., 35, No. 11, 1179–1186 (2016).

    Google Scholar 

  18. Z. Lei, X. Z. Kong, G. W. Liu, et al., J. Propuls. Technol., 38, No. 11, 2588–2596 (2017).

    Google Scholar 

  19. Z. K. Wang, Z. X Zeng, Y. H. Xu, et al., J. Propuls. Technol., 36, No. 3, 405–412 (2015).

  20. F. Wu, K. L. Lu, and Y. Xiao, Fire Sci. Technol., 34, No. 7, 863–865 (2015).

    Google Scholar 

  21. W. Gao, and W. Wang, Colloq. Math., 147, No. 1, 55–65 (2017).

    Article  MathSciNet  Google Scholar 

  22. L. Kang, H. L. Du, X. Du, et al., Desalin. Water Treat., 44, No. 25, 296–301 (2018).

  23. D. Li, L. Wang, W. Peng, et al., Polymer Compos., 38, No. 9, 2009–2015 (2017).

    Article  Google Scholar 

  24. A. M. Simoes, J. Interdiscip. Math., 21, No. 3, 645–667 (2018).

    Article  Google Scholar 

  25. M. A. Styugin, A. A. Kytmanov, and T. N. Yamskikh, J. Discrete Math. Sci. Cryptogr., 21, No. 3, 679–694 (2018).

    Article  MathSciNet  Google Scholar 

  26. W. Gao and W. F. Wang, J. Differ. Equ. Appl., 23, Nos. 1–2, Special Issue, 100–109 (2017).

  27. W. Gao and W. Wang, Colloq. Math., 149, No. 2, 291–298 (2017).

    Article  MathSciNet  Google Scholar 

  28. M. I. García-Planas and T. Klymchuk, Appl. Math. Nonlinear Sci., 3, No. 1, 97–104 (2018).

    Article  MathSciNet  Google Scholar 

  29. F. Dusunceli, Appl. Math. Nonlinear Sci., 4, No. 2, 365–370 (2019).

    Article  MathSciNet  Google Scholar 

  30. W. Zhao, T. Shi, and L. Wang, Appl. Math. Nonlinear Sci., 5, No. 1, 71–84 (2020).

    Article  MathSciNet  Google Scholar 

  31. H. Harraga and M. Yebdri, Appl. Math. Nonlinear Sci., 3, No. 1, 127–150 (2018).

    Article  MathSciNet  Google Scholar 

  32. A. M. Nasir, S. M. Husnine, T. Ak, et al., Math. Meth. Appl. Sci., 41, No. 16, 6611–6624 (2018).

    Article  Google Scholar 

  33. V. Fabian Morales-Delgado, J. Francisco Gomez-Aguilar, and A. Atangana, Therm. Sci., 23, No. 2B, 1279– 1287 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhang.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 138–144, June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Li, J., Li, W. et al. Influence of Geometric Tooth Shape Parameters of Labyrinth Seals on the Flow Law and the Algorithm for Designing Straight Grate Teeth. Russ Phys J 64, 1122–1129 (2021). https://doi.org/10.1007/s11182-021-02432-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02432-0

Keywords

Navigation