Skip to main content
Log in

Formation of Homogeneous Nanostructures Containing Silver on the Surface of a Glycolic Acid Polymer During Cyclic Freezing

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

A study was carried out of the effect of 10-fold cyclic freezing (down to –37°C) on the formation of nanostructures containing silver on the surfaces of a polymer of glycolic acid (dexon) and fibers coated with fluoropolymers (ftorex) when treated with a gel containing silver nanoparticles. It was found that, under hydrothermal conditions, the activation of linear aggregation of silver nanoparticles (with the formation of structures up to 500 nm in length) occurred only on dexon fibers, while only a large number of isolated nanoparticles with a diameter from 1 to 5 nm appeared on ftorex fibers. In general, the appearance of linear aggregation on the dexon fibers confirms the regeneration of silver ions on the surface of a glycolic acid polymer from nanoparticles synthesized by cavitation-diffusion photochemical reduction. This makes it possible to use this phenomenon to obtain nanostructures containing silver for their prolonged use in liquid media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ziąbka and M. Dziadek, Polymers, 11, No. 12, e2018 (2019).

    Article  Google Scholar 

  2. S. Nakamura, M. Sato, Y. Sato, et al., Int. J. Mol. Sci., 20, No. 15, 3620 (2019).

    Article  Google Scholar 

  3. A. I. Potekaev, I. A. Lysak, T. D. Malinovskaya, and G. V. Lysak, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 63, No. 3, 94–99 (2020). https://doi.org/10.6060/ivkkt.20206303.6195.

    Article  Google Scholar 

  4. S. S. Dzhimak, V. V. Malyshko, A. I. Goryachko, et al., Russ. Phys. J., 62, No. 2, 314–322 (2019).

    Article  Google Scholar 

  5. Z. Guo, B. Chen, M. Zhang, et al., J. Colloid Interface Sci., 348, 37–42 (2010).

    Article  ADS  Google Scholar 

  6. L. Jiang, Y. Zhou, Y. Guo, et al., J. Appl. Polym. Sci., 136, 47584 (2019).

    Article  Google Scholar 

  7. Y. Zhao, Q. Shang, J. Yu, et al., ACS. Appl. Mater. Inter., 7, 11783–11791 (2015).

    Article  Google Scholar 

  8. I. S. Petriev, S. N. Bolotin, V. Y. Frolov, et al., Bull. Russ. Acad. Sci. Phys., 82, 807–810 (2018).

    Article  Google Scholar 

  9. A. A. Basov, V. V. Malyshko, A. A. Elkina, et al., Russ. Open Med. J., 8, No. 4, e0409 (2019). DOI: https://doi.org/10.15275/rusomj.2019.0409.

    Article  Google Scholar 

  10. T. Hasobe, J. Phys. Chem. Lett., 4, 1771–1780 (2013).

    Google Scholar 

  11. I. M. Bykov, A. A. Basov, V. V. Malyshko, et al., Bull. Exp. Biol. Med., 163, No. 2, 268–271 (2017).

    Article  Google Scholar 

  12. I. S. Petriev, S. N. Bolotin, V. Yu. Frolov, et al., Russ. Phys. J., 61, No. 10, 1894–1898 (2018).

    Article  Google Scholar 

  13. S. S. Dzhimak, V. V. Malyshko, A. I. Goryachko, et al., Nanotechnologies in Russia, 14, 48–54 (2019).

    Article  Google Scholar 

  14. R. Seqqat, L. Blaney, D. Quesada, et al., J. Nanotechnology, 2019, 2850723 (2019). DOI: https://doi.org/10.1155/2019/2850723.

    Article  Google Scholar 

  15. S. Yan, D. Sun, Y. Gong, et al., J. Synchrotron Rad., 23, 718–728 (2016).

    Article  Google Scholar 

  16. N. Perkas, G. Amirian, G. Applerot, et al., Nanotechnology, 19, No. 43, 435604 (2008).

    Article  Google Scholar 

  17. X. R. Guo, Y. G. Yi, Z. Q. Tan, and J. F. Liu, Environ Sci. Technol., 52, No. 12, 6928–6935 (2018).

    Article  ADS  Google Scholar 

  18. L. Fan, J. Xie, Y. Zheng, et al., ACS Appl. Mater. Interfaces, 12, No. 19, 22225– 22236 (2020).

    Article  Google Scholar 

  19. S. Mubarak, D. Dhamodharan, and M. B. Kale, Nanomaterials (Basel), 10, No. 2, E217 (2020).

    Article  Google Scholar 

  20. Y. Lu and W. Yuan, Carbohydr Polym., 191, 86–94 (2018).

    Article  Google Scholar 

  21. P. Y. Huang, C. W. Chiu, C. Y. Huang, et al., Nanomaterials (Basel), 10, No. 1, E65 (2019). DOI: https://doi.org/10.3390/nano10010065.

    Article  Google Scholar 

  22. S. S. Dzhimak, M. E. Sokolov, A. A. Basov, et al., Nanotechnologies in Russia, 11, No. 11–12, 835–841 (2016).

    Article  Google Scholar 

  23. L. Jia, L. Tong, Y. Liang, et al., J. Am. Chem. Soc., 136, No. 47, 16676–16682 (2014).

    Article  Google Scholar 

  24. B. Jia, Y. Zhao, M. Qin, et al., J. Colloid Interface Sci., 535, 524–532 (2019).

    Article  ADS  Google Scholar 

  25. Z. Wang, H. Zhang, A. J. Chu, et al., Acta Biomater., 70, 98–109 (2018).

    Article  Google Scholar 

  26. R. Li, H. Wang, Y. Song, et al., J. Am. Chem. Soc., 141, No. 50, 19542–19545 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Dzhimak.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 62–67, June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhimak, S.S., Shashkov, D.I., Malyshko, V.V. et al. Formation of Homogeneous Nanostructures Containing Silver on the Surface of a Glycolic Acid Polymer During Cyclic Freezing. Russ Phys J 64, 1033–1038 (2021). https://doi.org/10.1007/s11182-021-02425-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02425-z

Keywords

Navigation