Skip to main content
Log in

Phase Formation in Transition Layer Between Matrix and Particle During Thermal Cycle

  • Published:
Russian Physics Journal Aims and scope

The formation of the composition and properties of composites mostly depends on changes in the temperature dynamics. A transition layer between the initial particle and the matrix consists of several new phases, the relation between which depends on both the micro-level processes (physical mechanisms of diffusion and chemical reactions) and experimental conditions. The model is proposed for the multiphase transition layer between the matrix and the particle based on the reaction diffusion theory. The phase formation corresponds to the phase diagrams and depends on temperature. The problem of the growth of new phases with moving interfaces is partially solved analytically in the quasi-stationary approximation. Using the numerical simulation, the phase formation dynamics is studied in the given thermal cycles typical for approximation and selective laser melting and electron-beam melting. Carbidosteels are used in these investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Kaczmar, K. Pietrzak, and W. Włosiński, J. Mater. Process. Technol., 106, 58–67 (2000).

    Article  Google Scholar 

  2. E. N. Korosteleva and V. V. Korzhova, Russ. Phys. J., 63, No. 7, 1195–1201 (2020).

    Article  Google Scholar 

  3. V. M. Fomin, A. A. Golyshev, V. F. Kosarev, et al., Fiz. Mezomekh., 22, No. 4, 5–15 (2019).

    Google Scholar 

  4. D. A. Osipov, I. V. Smirnov, K. V. Grinyaev, et al., Russ. Phys. J., 63, No. 9, 1583–1589 (2020).

    Article  Google Scholar 

  5. D. A. Goncharuk and G. A. Baglyuk, Vіsnik Natsіonal’nogo tekhnіchnogo unіversitetu Ukraїni “Kiїvs’kii polіtekhnіchnii іnstitut”, Ser. Mashinobuduvannya, No. 61, 155–159 (2011).

  6. K. I. Parashivamurthy, R. K. Kumar, S. Seetharamu, et al., J. Mater. Sci., 36, 4519–4530 (2001).

    Article  ADS  Google Scholar 

  7. H. A. Pham, T. Ohba, S. Morito, et al., Mater. Sci. Forum, 738–739, 25–30 (2013).

    Article  Google Scholar 

  8. A. P. Amosov, A. R. Samboruk, I. V. Yatsenko, and V. V. Yatsenko, Vestnik PNIPU. Mashinostroenie, materialovedenie, 20, No. 4, 5–14 (2018).

    Google Scholar 

  9. G. A. Pribytkov, V. V. Korzhova, A. V. Baranovskii, and M. G. Krinitsyn, Izv. Vyssh. Uchebn. Zaved., Poroshkovaya metallurgiya i funktsional'nye pokrytiya, No. 2, 64–71 (2017).

  10. V. V. Fadin, A. V. Kolubaev, and M. I. Aleutdinova, Perspektivnye materialy, No. 4, 91–96 (2011).

    Google Scholar 

  11. A. Saidi, A. Chrysanthou, J. V., Wood, and J. L. F. Kellie, Ceram. Int., 23, 185–189 (1997).

  12. V. T. Telepa, V. A. Shcherbakov, and A. V. Shcherbakov, Lett. Mater., 6, No. 4, 286–289 (2016).

    Article  Google Scholar 

  13. S. Ariely, M. Bamberger, H. Hügel, and P. Schaaf, J. Mater. Sci., 30, 1849–1853 (1995).

    Google Scholar 

  14. K. Das, T. K. Bandyopadhyay, and S. A. Das, J. Mater. Sci., 37, 3881–3892 (2020).

    Google Scholar 

  15. A. Knyazeva and O. Kryukova, J. Cryst. Growth, 531, 125349 (2020).

    Article  Google Scholar 

  16. J. Jin, R. Gao, H. Peng, et al., Metall. Mater. Trans. A, 51, 2411–2429 (2020).

    Article  Google Scholar 

  17. Yu. A. Chumakov and A. G. Knyazeva, JOEP, 81, No. 1, 156–166 (2008).

    Google Scholar 

  18. E. A. Nekrasov, Yu. M. Maksimov, and A. P. Aldushin, CESW, 16, No. 3, 342–347 (1980).

    Google Scholar 

  19. E. A. Nekrasov, V. K. Smolyakov, and Yu. M. Maksimov, CESW, 17, No. 5, 513–520 (1981).

    Google Scholar 

  20. O. B. Kovalev and V. V. Belyaev, CESW, 49, No. 5, 563–574 (2013).

    Google Scholar 

  21. M. A. Anisimova, A. G. Knyazeva, M. G. Krinitcin, et al., High Temp. Mater. Process., 23, No. 1, 1–23 (2019).

    Article  Google Scholar 

  22. M. A. Anisimova and A. G. Knyazeva, Nanosci. Tech.: An Int. J., 11, No. 1, 37–54 (2020).

    Google Scholar 

  23. M. A. Anisimova and A. G. Knyazeva, Vestn Tom. gos. un-ta. Matematika i mekhanika, No. 63, 60–71 (2020).

  24. C. Z. Wagner, Phys. Chem., 21 B, No. 1, 25–36 (1933).

  25. O. V. Lapshin and V. E. Ovcharenko, Combust. Explo. Shock, 32, 299–305 (1996).

    Article  Google Scholar 

  26. V. Filimonov, V. Evstigneev, A. Afanas’ev, and M. Loginova, Int. J. Self-Propag. High-Temp. Synth., 17, 101–105 (2008).

    Article  Google Scholar 

  27. B. S. Bokshtein, Diffusion in Metals [in Russian], Metallurgiya, Moscow (1978).

    Google Scholar 

  28. A. G. Knyazeva and Yu. P. Sharkeev, Key Eng. Mater., 712, 220–225 (2016).

    Article  Google Scholar 

  29. M. Megahed, H. W. Mindt, N. N’Dri, et al., Integr. Mater Manuf. Innov., 5, 61–93 (2016).

    Article  Google Scholar 

  30. B. B. Khina and B. Formanek, Int. J. Self-Propag. High-Temp. Synth., 16, No. 2, 51–61 (2007).

    Article  Google Scholar 

  31. B. B. Khina, B. Formanek, and I. Solpan, Physica B: Condens. Matter., 355, No. 1–4, 14–31 (2005).

    Article  ADS  Google Scholar 

  32. Y. Zare, K. Y. Rhee, and S.-J. Park, Fizich. Mezomekh., 22, No. 5, 62–69 (2019). DOI: https://doi.org/10.24411/1683-805X-2019-15008.

  33. Y. Zare and K. Y. Rhee, Fizich. Mezomekh., 22, No. 3, 100–105 (2019). DOI: https://doi.org/10.24411/1683-805X-2019-13011.

  34. M. Anisimova, A. Knyazeva, and I. Sevostianov, Int. J. Eng. Sci., 153, 103307 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Anisimova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 16–23, April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimova, M.A. Phase Formation in Transition Layer Between Matrix and Particle During Thermal Cycle. Russ Phys J 64, 581–589 (2021). https://doi.org/10.1007/s11182-021-02386-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02386-3

Keywords

Navigation