Skip to main content
Log in

The Influence of Severe Plastic Deformation and Subsequent Annealing on Structure and Mechanical Properties of VT35 Titanium Alloy

  • Published:
Russian Physics Journal Aims and scope

The effect of severe plastic deformation by multiple pressing and subsequent annealing on the structure and mechanical properties of VT35 titanium alloy is studied. It is shown that the formation of ultrafine-grained state results in a 40–60% increase of its room-temperature mechanical properties compared to the initial coarse-grained state. A subsequent annealing of the ultrafine-grained VT35 alloy at 773 K improves homogeneity of the structure formed by multiple pressing; the average size of the grain-subgrain structure elements does not increase and there is no precipitation of additional fine α-phase particles in the bulk of β-grains. These structural changes are expected to improve room-temperature mechanical properties of the alloy after its annealing at 773 K. A further increase in the annealing temperature to 873 K is followed by recrystallization, an increase in the average size of the grain-subgrain structure elements and, as a consequence, a degradation of the mechanical properties. It is found out that an increase in the total imposed strain degree within the temperature range of 773–823 K during multiple pressing of VT35 alloy provides an additional 65–70% improvement of its room-temperature properties compared to the initial coarse-grained state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials [in Russian], IKC Akademkniga, Moscow (2007).

    Google Scholar 

  2. Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, et al., Grain-Boundary Diffusion and Properties of Nanostructured Materials [in Russian], Nauka, Novosibirsk (2001).

    Google Scholar 

  3. M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci., 51, 427 (2006).

    Article  Google Scholar 

  4. E. V. Naydenkin, I. V. Ratochka, and G. P. Grabovetskaya, Mater. Sci. Forum, 667669, 1183 (2011).

  5. R. Z. Valiev, A. P. Zhilyaev, and T. G Langdon, Bulk Nanostructured Materials: Fundamentals and Applications, Wiley, New Jersey (2013).

  6. E. V. Naydenkin, I. V. Ratochka, I. P. Mishin, et al., J. Mater. Sci., 52, No. 8, 4164 (2017).

    Article  ADS  Google Scholar 

  7. S. V. Zherebtsov, E. A. Kudryavtsev, G. A. Salishchev, et al., Acta Mater., 121, 152 (2016).

    Article  ADS  Google Scholar 

  8. H. Matsumoto, K. Yoshida, S.-H. Lee, et al., Mater. Lett., 98, 209 (2013).

    Article  Google Scholar 

  9. G. P. Grabovetskaya, O. V. Zabudchenko, I. P. Mishin, et al., Russ. Phys. J., 62, No. 8, 1330 (2019).

    Article  Google Scholar 

  10. A. G. Bratukhin, Advanced Aerospace Materials: Technological and Functional Peculiarities. Course book for aircraft engineering and disciplines [in Russian], AviaTekhInform XXI (2001).

  11. G. Lütjering and J.C. Williams, Titanium. Engineering Materials. Processes, Springer, Berlin (2007).

  12. A. Mouritz, A. Introduction to Aerospace Materials. – Woodhead Publishing Ltd, 2012. – 621 p.

  13. U. Zwicker, Titan und Titanlegierungen (Titanhium and Alloys), Springer-Verlag, Berlin, Heidelberg (1974).

  14. A. A. Ilyin, B. A. Kolachev, and I. S. Polkin, Titanium Alloys. Composition, structure, properties: reference book [in Russian], VILS-MATI, Moscow (2009).

  15. A. I. Khorev, Materalovedeniye, No. 4, 28 (2009).

  16. M. Ahmed, D. G. Savvakin, O. M. Ivasishin, and E. V. Pereloma, Mater. Sci. Eng. A, 605, 89 (2014).

    Article  Google Scholar 

  17. O. P. Shaboldo, Ya. M. Vitorskii, V. V. Sagaradze, et. al., Phys. Met. Metallogr., 118, No. 1, 79 (2017).

  18. R. Donga, J. Li, H. Koua, et al., J. Mater. Sci. Technol., 15, 48 (2019).

    Article  Google Scholar 

  19. A. A. Shiryaev, N. A. Nochovnaya, and A. S. Pomel’nikova, Trudy VIAM, No. 10 (82), 25 (2019).

  20. Zhaoxin Dua, Yan Maa, Fei Liua, et al., Mater. Sci. Eng. A, 754, 702 (2019).

  21. V. A. Vinokurov, I. V. Ratochka, E. V. Naydenkin, I. P. Mishin, and N. V. Rozhintseva, RF Patent No. 2388566, priority of 22.07.2008. Publ. 10.05.2010. Bull. No. 13.

  22. I. V. Ratochka, O. N. Lykova, O. V. Zabudchenko, and E. V. Naydenkin, Russ. Phys. J., 55, No. 6, 616 (2012).

    Article  Google Scholar 

  23. I. V. Ratochka, O. N. Lykova, and E. V. Naydenkin, Phys. Met. Metallogr., 116, No. 3, 302 (2015).

    Article  ADS  Google Scholar 

  24. I. V. Ratochka and O. N. Lykova, Inorgan. Mater.: Appl. Res., 8, No. 2, 348 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Ratochka.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 67–73, April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratochka, I.V., Naydenkin, E.V., Lykova, O.N. et al. The Influence of Severe Plastic Deformation and Subsequent Annealing on Structure and Mechanical Properties of VT35 Titanium Alloy. Russ Phys J 64, 636–642 (2021). https://doi.org/10.1007/s11182-021-02378-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02378-3

Keywords

Navigation