Skip to main content
Log in

Stress Behavior Analysis Model of Steel Fiber Reinforced Concrete Beam

  • Published:
Russian Physics Journal Aims and scope

The traditional Desai model fails to calculate the bearing capacity of a beam effectively, which could lead to its failure. In order to solve this problem successfully, a new RAV analysis model is proposed to analyze the stress behavior of steel fiber reinforced concrete beams. The vertical effect of steel fiber reinforced concrete (SFRC) beams is analyzed by means of a rod element simulation. The analysis results of the beam large displacement effect are determined using multi-stage displacements. Based on the above two physical quantities, the stress finite element equation is determined. According to the finite element equation, the reliability and response characteristics of the beam are analyzed, and a new RAV behavior analysis model is formulated. The results show that compared with the Desai model, the new RAV model can improve the accuracy of calculating the beam bearing capacity limit by about 40% under the conditions of high, medium and low nonlinear stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Mobasher, Y. Yao and C. Soranakom, Eng. Struct., 25, No. 17, 164–177 (2015).

    Article  Google Scholar 

  2. Z. Fasheng, D. Yining, X. Jing, et al., Eng. Struct., 32, No. 12, 101–116 (2016).

    Google Scholar 

  3. L. Xu, P. Chen, L. Huang, et al., China Civil Eng. J., 48, No. 4, 15–22 (2015).

    Google Scholar 

  4. L. Xu, F. Deng, H. Xu, et al., Tumu Gongcheng Xuebao/ China Civil Eng. J., 49, No. 1, 3–13 (2016).

  5. Z. Fasheng, D. Yining, X. Jing, et al., Eng. Struct., 26, No. 7, 101–116 (2016).

    Google Scholar 

  6. R. Khuram and B. Nosheen. Struct. Concr., 18, No. 4, 93–106 (2017).

    Google Scholar 

  7. A. Ali, C. Evan and Bentz, Struct. Concr., 19, No. 10, 36–48 (2018).

  8. P. Pujadas, A. Blanco, S. Cavalaro, et al., Constr. Build. Mater., 57, 92–104 (2014).

    Article  Google Scholar 

  9. F. Gao, J. Y. Guo, H. Yuan, et al., Mat. Sci., 23, No. 4, 56–63 (2017).

    Google Scholar 

  10. G. Alberti Marcos, A. Enfedaque , C. Gálvez Jaime, et al., Fiber., 3, No. 4, 504–522 (2015).

    Article  Google Scholar 

  11. E. M. Babych and O. V. Andriichuk, Mat. Sci., 52, No. 4, 509–513 (2017).

    Article  Google Scholar 

  12. I. Fatiha, Front. Struct. Civ. Eng., 12, No. 4, 439–453 (2018).

    Article  Google Scholar 

  13. Y. Y. Doo, B. Nemkumar and S. Y. Young, Can. J. Civil. Eng., 44, No. 1, 18–28 (2017).

    Article  Google Scholar 

  14. Thorhallsson, R. Eythor, J. T. Snaebjornsson, Solid State Phenom., 24, No. 9, 79–84 (2016).

    Article  Google Scholar 

  15. Y. Shuang, J. Hongguang, L. Juanhong, et al., Anti-Corros. Method. Mater., 63, No. 3, 236–244 (2016).

    Article  Google Scholar 

  16. L.J. Hou, Z.Y. Ye, B.X. Zhou, et al., Struct. Concr., 23, No. 8, 43–56 (2019).

    Google Scholar 

  17. P. Z. Chuan, Y. W. Qiao, H. C. Deng, et al., Acta Mech. Solida Sinica, 36, No. 3, 36–46 (2018).

    Google Scholar 

  18. A. R. Mustaqqim, N.r A. G. Abdul, A. C. M. Muhammad, et al., Mater. Sci. Forum, 39, No. 4, 185–188 (2017).

  19. S. K. Il, S. C. Yoon, K. L. Chan, et al., Mater. Sci. Forum, 36, No. 12, 123–127 (2018).

    Google Scholar 

  20. P. Prabin and Y.X. Zhang, Struct. Concr., 26, No. 18, 1–9 (2017).

    Google Scholar 

  21. H. Sungnam and K. P. Sun, Polym. Composite., 38, No. 3, 22–30 (2017).

    Google Scholar 

  22. R. Farzad, L. Lan and G. Khaled, Can. J. Civil Eng., 45, No. 6, 504–515 (2018).

    Article  Google Scholar 

  23. Z. Wuchao and Q. Jiang, Int. J. Struct. Stab. Dyn., 43, No. 6, 33–43 (2019).

    Google Scholar 

  24. J. Yu, Y. Ding, J. Xie, et al., Tianjin Daxue Xuebao, 50, No. 2, 181–187 (2017).

    Google Scholar 

  25. Z. J. Tang, X.D. Song and Q. Huang, KSCE Can. J. Civil. Eng., 23, 3397–3408 (2019).

    Article  Google Scholar 

  26. Q. Cao, J. P. Zhou, X. F. Wanhg, et al., Ksce Journal of Civil Engineering, 22, No. 1, 196–203 (2018).

    Article  Google Scholar 

  27. F. Liu, A. Jili, D. Yang, et al., Harbin Gongye Daxue Xuebao/J. Harbin Inst. Techn., 50, No. 12, 38–44 (2018).

  28. W. Liu, N. Bai and G. Li, Jianzhu Jiegou Xuebao/J. Building Struct., 39, 36–43 (2018).

    Google Scholar 

  29. D. X. Yi, Y. Z. Ying, D. Kun, et al., Journal of Southeast University, 47, No. 2, 356–361 (2017).

    Google Scholar 

  30. R. P. Rashmi, J. Inst. Eng., 98, No. 5, 1–9 (2017).

    Google Scholar 

  31. N. K. Marcela, A. F. Marcelo, et al., Eng. Struct., 14, No. 3, 306–315 (2017).

    Google Scholar 

  32. L. Song and Z. Yu. Jianzhu Jiegou Xuebao/J. Building Struct., 40, No. 1, 58–66 (2019).

    Google Scholar 

  33. W. Suteera, K. Wuttinant, B. Jirachaya, et al., Key Eng. Mat., 751, 779–784 (2017).

    Article  Google Scholar 

  34. A. A. Constr. Build. Mater., 36, No. 5, 683–696 (2018).

    Google Scholar 

  35. P. Su, H. Li, J.X. Chou, et al., J. Civil, Archit. Environ. Eng., 39, No. 1, 68–76 (2017).

    Google Scholar 

  36. J. S. Margaret, V. M. Shanthi, J. Comput. Theor. Nanosci., 15, No. 2, 744–751 (2018).

    Article  Google Scholar 

  37. D. Jason, K. Sara, D. Sreekanta, Constr. Build. Mater., 17, No. 6, 470–481 (2018).

    Google Scholar 

  38. R. Aahin, and O. Yacl, Appl. Math. Nonlinear Sci., 5, No. 1, 369–384 (2020).

    Article  MathSciNet  Google Scholar 

  39. S. Aidara, Y. Sagna, Appl. Math. Nonlinear Sci., 4, No. 1, 139–150 (2019).

    Article  Google Scholar 

  40. B. Assaye, M. Alamneh, L. N. Mishra, et al., Appl. Math. Nonlinear Sci., 4, No. 1, 151–162 (2019).

    Article  MathSciNet  Google Scholar 

  41. K. Yamac, F. Erdogan, Appl. Math. Nonlinear Sci., 5, No. 1, 405–412 (2020).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Luo.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 74–84, April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, D. Stress Behavior Analysis Model of Steel Fiber Reinforced Concrete Beam. Russ Phys J 64, 643–656 (2021). https://doi.org/10.1007/s11182-021-02377-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02377-4

Keywords

Navigation