Skip to main content
Log in

Invariance Properties of the One-Dimensional Diffusion Equation with a Fractal Time Derivative

  • Published:
Russian Physics Journal Aims and scope

Based on the group analysis of differential equations, we consider the symmetry properties of equations with fractal derivatives defined within the framework of Fα-calculus. Analogs of the prolongation of transformations of independent and dependent variables are discussed. The infinitesimal invariance of equations with fractal derivatives is studied on an example of the Lie symmetries of the one-dimensional diffusion equation with a fractal time derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives and Their Applications [in Russian], Nauka i Tekhnika, Minsk (1987).

    MATH  Google Scholar 

  2. R. Metzler, W. G. Glockle, and T. F. Nonnenmacher, Physica A, 211, No. 1, 13–24 (1994).

    Article  ADS  Google Scholar 

  3. R. Metzler, E. Barkai, and J. Kafter, Phys. Rev. Lett., 83, 3563 (1999).

    Article  ADS  Google Scholar 

  4. V. V. Uchaikin, Usp. Fiz. Nauk, 173, No. 8, 847–875 (2003).

    Article  Google Scholar 

  5. J. Klafter, S. C. Lim, and R. Metzler, eds., Fractional Dynamics, World Scientific, New Jersey; London; Hong Kong (2011).

  6. A. Parvate and A. D. Gangal, Fractals, 17, 53–148 (2009).

    Article  MathSciNet  Google Scholar 

  7. A. Parvate and A. D. Gangal, Fractals, 19, 271–290 (2011).

    Article  MathSciNet  Google Scholar 

  8. A. Parvate, S. Satin, and A. D. Gangal, Fractals, 19, 15–27 (2011).

    Article  MathSciNet  Google Scholar 

  9. A. R. Golmankhaneh, A. Fernandez, A. K. Golmankhaneh, and D. Baleanu, Entropy, 20, 1–13 (2018).

    Google Scholar 

  10. L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  11. N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Mathematics and its Applications (Soviet Series), D. Reidel Publishing, Dordrecht (1985).

    Book  Google Scholar 

  12. P. Olver, Applications of Lie Groups to Differential Equations, Springer, New York (1986).

    Book  Google Scholar 

  13. R. K. Gazizov, A. A. Kasatkin, and S. Yu. Lukashchuk, Phys. Scripta, 136, Article ID 014016 (2009).

    Article  Google Scholar 

  14. R. K. Gazizov, A. A. Kasatkin, and S. Yu. Lukashchuk, Ufimsk. Mat. Zh., 4, No. 4, 54–68 (2012).

    Google Scholar 

  15. A. R. Golmankhaneh and C. Tunc, Fractal and Fract., 3, No. 25, (2019).

  16. G. P. Tolstov, Measure and Integral [in Russian], Nauka, Moscow (1976).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shapovalov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 122–131, April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapovalov, A.V., Brons, R. Invariance Properties of the One-Dimensional Diffusion Equation with a Fractal Time Derivative. Russ Phys J 64, 704–716 (2021). https://doi.org/10.1007/s11182-021-02371-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02371-w

Keywords

Navigation