Skip to main content
Log in

Experimental Study and Numerical Simulation of Breakdown of a Gap with a Sharply Inhomogeneous Electric Field Distribution

  • PLASMA PHYSICS
  • Published:
Russian Physics Journal Aims and scope

The results of an experimental study of breakdown of a cone-to-plane gap, filled with nitrogen at a pressure of 12.5–400 kPa at a negative polarity, and its numerical simulation by the XOOPIC code are presented. The formation of a diffuse discharge is observed within the entire range of pressures. At the nitrogen pressures of up 200 kPa, a large-diameter streamer is formed in the gap. At higher pressure, two streamers of smaller diameters are observed to form. At low nitrogen pressures, the streamer starts forming at a certain distance from the cathode. The numerical simulation demonstrates that under these conditions the electrons rapidly leave the near-cathode region due to the high reduced electric field strength. The excitation of nitrogen molecules is taken into account in the simulation. Using the R391/394 ratio of the emission intensities from the bands of the N2+ molecular ion and the N2 molecule, the dynamics of the electron temperature Te and the reduced electric field strength E/p in the plasma are determined. The streamer velocity is determined from the propagation velocity of the R391/394 maximum along the gap. The results are compared with the numerical simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Beloplotov, V. F. Tarasenko, D. A. Sorokin, et al., JETP Lett., 106, Iss. 10, 653 (2017).

  2. D. Levko and Y. E. Krasik, J. Appl. Phys., 112, 113302 (2012).

    Article  ADS  Google Scholar 

  3. V. A. Shklyaev, E. K. Baksht, S. Y. Belomyttsev, et al., J. Appl. Phys., 121, 093304 (2017).

    Article  ADS  Google Scholar 

  4. V. F. Tarasenko, E. K. Baksht, D. V. Beloplotov, et al., Laser Part. Beams, 34, 748 (2016).

    Article  ADS  Google Scholar 

  5. M. R. Ulmaskulov, G. A. Mesyats, A. G. Sadykova, et al., Rev. Sci. Instrum., 88, 045106 (2017).

    Article  ADS  Google Scholar 

  6. T. Shao, V. F. Tarasenko, W. Yang, et al., Chin. Physics Lett., 31, 084301 (2014).

    Article  Google Scholar 

  7. S. Yatom and Y. E. Krasik, J. Phys. D: Appl. Phys., 47, No. 5, 215202 (2014).

    Article  ADS  Google Scholar 

  8. D. Z. Pai, G. D. Stancu, D. A. Lacoste, et al., Plasma Sources Sci. Technol., 18, 045030 (2009).

    Article  ADS  Google Scholar 

  9. M. I. Lomaev, D. V. Beloplotov, V. F. Tarasenko, et al., IEEE Trans. Dielectr. Electr. Insul., 22, 1833 (2015).

    Article  Google Scholar 

  10. T. Shao, V. F. Tarasenko, C. Zhang, et al., Rev. Sci. Instrum., 84, 053506 (2013).

    Article  ADS  Google Scholar 

  11. V. A. Shklyaev, E. K. Baksht, S.Ya. Belomyttsev, et al., J. Appl. Phys., 118, 213301 (2015).

  12. A. Kozyrev, V. Kozhevnikov, M. Lomaev, et al., EPL, 114, 45001 (2016).

    Article  ADS  Google Scholar 

  13. B. Godard, IEEE J. Quantum Electron., 10, 147 (1974).

    Article  ADS  Google Scholar 

  14. Yu. I. Bychkov, V. F. Losev, V. V. Savin, et al., Kvant. Elektr., 2, 20147 (1975).

    Google Scholar 

  15. M. I. Lomaev, D. V. Rybka, D. A. Sorokin, et al., Opt. Spectrosc., 107, 33 (2009).

    Article  ADS  Google Scholar 

  16. D. V. Beloplotov, M. I. Lomaev, D. A. Sorokin, and V. F. Tarasenko, Russ. Phys. J., 60, No. 8, 1308 (2017).

    Article  Google Scholar 

  17. D. V. Beloplotov, M. I. Lomaev, D. A. Sorokin, and V. F. Tarasenko, Russ. Phys. J., 62, No. 7, 1171 (2019).

    Article  Google Scholar 

  18. P. Paris, M. Aints, F. Valk, et al., J. Phys. D: Appl. Phys., 38, 3894 (2005).

    Article  ADS  Google Scholar 

  19. N. Britun, M. Gaillard, A. Ricard, et al., J. Phys. D: Appl. Phys., 40, 1022 (2007).

    Article  ADS  Google Scholar 

  20. Y. Itikawa, J. Phys. Chem. Ref. Data, 35, 31 (2006).

    Article  ADS  Google Scholar 

  21. A. V. Phelps and L. C. Pitchford, Phys. Rev. A, 31, 2932 (1985).

    Article  ADS  Google Scholar 

  22. V. A. Shklyaev, S.Ya. Belomyttsev, and V. V. Ryzhov, J. Appl. Phys, 112, 113303 (2012).

  23. P. Tardiveau, L. Magne, E. Marode, et al., Chin. Phys. Lett., 31, 084301 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Beloplotov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 136–142, February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beloplotov, D.V., Grishkov, A.A., Sorokin, D.A. et al. Experimental Study and Numerical Simulation of Breakdown of a Gap with a Sharply Inhomogeneous Electric Field Distribution. Russ Phys J 64, 340–347 (2021). https://doi.org/10.1007/s11182-021-02334-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02334-1

Keywords

Navigation