Skip to main content
Log in

Diffraction-Ray Model of Single Filamentation of Femtosecond Laser Pulses for Estimating the Characteristics of the Multiple Filamentation Domain in Air

  • Published:
Russian Physics Journal Aims and scope

The characteristics of the multiple filamentation domain of femtosecond laser pulses in air have been estimated based on the single filamentation model. The diffraction-ray model is considered as the single filamentation model. It is based on representation of a laser beam by a set of diffraction-ray tubes nested into each other that do not intersected in space and do not exchange by their energies. In this situation, changes in the tube shapes and cross sections during beam propagation demonstrate the effect of physical processes that occur with radiation in the medium. It is shown that this model is efficient for interpreting experimental results. In particular, it has been demonstrated that the radius of small-scale intensity inhomogeneities in the profile of a centimeter laser beam forming the multiple filamentation domain of subterawatt femtosecond laser pulses is several millimeters. The power in these inhomogeneities varies from several units to several tens of gigawatts. Telescoping the initial laser beam that caused an increase in its radius also increased sizes of the initial smallscale intensity inhomogeneities and decreased the power contained in them. As a result, the coordinate of the filamentation onset is shifted along the propagation path from the laser pulse source. The lengths of the filaments and their number increase with the peak beam power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Braun, G. Korn, X. Liu, et al., Opt. Lett., 20, No. 1, 73–75 (1995).

    Article  ADS  Google Scholar 

  2. E. T. J. Nibbering, P. F. Curley, G. Grillon, et al., Opt. Lett., 21, No. 1, 62–64 (1996).

    Article  ADS  Google Scholar 

  3. A. Brodeur, C. Y. Chien, F. A. Ilkov, et al., Opt. Lett., 22, No. 5, 304–306 (1997).

    Article  ADS  Google Scholar 

  4. M. Mlejnek, E. M. Wright, and J. V. Moloney, Opt. Lett., 23, 382–384 (1998).

    Article  ADS  Google Scholar 

  5. G. Mechain, C. D’Amico, Y.-B. Andre, et al., Opt. Commun., 247, 171–180 (2005).

    Article  ADS  Google Scholar 

  6. J.-F. Daigle, Filamentation in Air: Evolution, Control and Applications, Diss. Ph.D., Université Laval, Quebec (2012).

  7. D. V. Apeksimov, O. A. Bukin, S. S. Golik, et al., Opt. Atmos. Okeana, 27, No. 12, 1042–1046 (2014).

    Google Scholar 

  8. D. V. Apeksimov, A. A. Zemlyanov, A. N. Iglakova, et al., Opt. Atmos. Okeana, 28, No. 3, 274–277 (2015).

    Google Scholar 

  9. D. V. Apeksimov, Y. E. Geints, A. A. Zemlyanov, et al., Opt. Atmos. Okeana, 32, No. 9, 717–725 (2019).

    Google Scholar 

  10. D. V. Apeksimov, A. A. Zemlyanov, A. N. Iglakova, et al., Opt. Atmos. Okeana, 30, No. 9, 727–732 (2017).

    Google Scholar 

  11. V. P. Kandidov, S. A. Shlenov, O. G. Kosarev, Kvant. Elektr., 39, No. 3, 205–228 (2009).

    Article  Google Scholar 

  12. Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, et al., Kvant. Elektr., 46, No. 2, 133–141 (2016).

    Article  Google Scholar 

  13. S. Skupin, L. Bergé, U. Peschel, et al., Phys. Rev. E, 70, 046602-1–046602-13 (2004).

    ADS  Google Scholar 

  14. G. Méchain, A. Couairon, Y.-B. André, et al., Appl. Phys. B, 79, No. 3, 379–382 (2004).

    Article  Google Scholar 

  15. J.-F. Daigle, O. G. Kosareva, N. A. Panov, et al., Opt. Commun., 284, No. 14, 3601–3606 (2011).

    Article  ADS  Google Scholar 

  16. L. Berge, S. Skupin, F. Lederer, et al., Phys. Rev. Lett., 92, No. 22, 225002.1–225002.4 (2004).

    Article  ADS  Google Scholar 

  17. Y. E. Geints, A. A. Zemlyanov, nd O. V. Minina, Opt. Atmos. Okeana, 31, No. 5, 364–371 (2018).

  18. Y. E. Geints, A. A. Zemlyanov, and O. V. Minina, Opt. Atm. Okeana, 31, No. 7, 515–522 (2018).

    Google Scholar 

  19. Yu. E. Geints, A. A. Zemlyanov, and O. V. Minina, Russ. Phys. J., 63, No. 9, 1622–1630 (2021).

    Article  Google Scholar 

  20. Y. E. Geints, O. V. Minina, and A. A. Zemlyanov, J. Opt. Soc. Am. B, 36, No. 11, 3209–3217 (2019).

    Article  ADS  Google Scholar 

  21. D. V. Apeksimov, Y. E. Geints, A. A. Zemlyanov, et al., Filamentation of Femtosecond Laser Pulses in Air, A. A. Zemlyanov, ed. [in Russian], Publishing House of the V. E. Zuev Institut of Atmospheric Optics SB RAS (2017).

  22. D. V. Apeksimov, A. A. Zemlyanov, A. N. Iglakova, et al., Opt. Atmos. Okeana, 30, No. 11, 910–914 (2019).

    Google Scholar 

  23. A. A. Zemlyanov, A. D. Bulygin, and Y. E. Geints, Opt. Atmos. Okeana, 26, No. 5, 350–362 (2013).

    Google Scholar 

  24. J. H. Marburger, Prog. Quant. Electron., 4, Part 1, 35–110 (1975).

  25. V. A. Petrishchev and V. I. Talanov, Kvant. Elektr., No. 6, 35–42 (1971).

  26. R. W. Boyd, S. G. Lukishova, and Y. R. Shen, eds., Self-Focusing: Past and Present. Fundamentals and Prospects, Springer, Berlin (2009).

    Google Scholar 

  27. G. G. Matvienko, P. A. Babushkin, S. M. Bobrovnikov, et al., Opt. Atmos. Okeana, 32, No. 9, 726–740 (2019).

    Google Scholar 

  28. M. Durand, A. Houard, B. Prade, et al., Opt. Express, 21, 26836–26845 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zemlyanov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 154–164, January, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemlyanov, A.A., Geints, Y.É. & Minina, O.V. Diffraction-Ray Model of Single Filamentation of Femtosecond Laser Pulses for Estimating the Characteristics of the Multiple Filamentation Domain in Air. Russ Phys J 64, 180–190 (2021). https://doi.org/10.1007/s11182-021-02314-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02314-5

Keywords

Navigation