Skip to main content
Log in

Analysis for Transverse Shake Vibration of High-Rise Buildings Based on Partial Differential Equation

  • Published:
Russian Physics Journal Aims and scope

In order to overcome the problems of long analysis time, low accuracy, and high energy consumption in traditional lateral vibration analysis methods of high-rise buildings, a new method of lateral vibration analysis of high-rise buildings based on partial differential equation is proposed. Based on Hamilton’s principle, the partial differential equation of lateral vibration of high-rise buildings is established, and the Galerkin method is used to solve the partial differential equation until the discrete solution is obtained, and then the displacement response of high-rise buildings under different excitation frequencies is obtained. The experimental results show that compared with the traditional method, the proposed method has the advantages of short calculation time, high accuracy, and low energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Liu and Z. M. Wang, J. Appl. Mech., 35, No. 5, 95–101, 264 (2018).

  2. D. M. Huang and Q. S. Ding, J. Vib. Eng., 30, No. 6, 983–992 (2017).

    Google Scholar 

  3. R. R. Li and X. S. Yao, Chin. J. Appl. Mech., 34, No. 3, 417–423 (2017).

    Google Scholar 

  4. X. H. Liu and B. Yan, Chin. J. Appl. Mech., 34, No. 2, 370–376 (2017).

    Google Scholar 

  5. L. H. Zou and H. Q. Tang, Eng. Mech., 34, No. 1, 157–165 (2017).

    Google Scholar 

  6. Z. Li and Y. D. Hu, J. Vib. Shock, 36, No. 23, 75–82 (2017).

    Google Scholar 

  7. Y. Wang and J. Li, World Earthqu. Eng., 33, No. 1, 216–222 (2017).

    Google Scholar 

  8. Y. Z. Yan and W. L. Qiang, Chin. Railway Sci., 38, No. 6, 49–57 (2017).

    Google Scholar 

  9. T. T. Niu and Y. M.Chen, Rock Soil Mech., 39, No. 3, 872–880 (2018).

    Google Scholar 

  10. S. S. Dong and W. Wang, Chin. J. Appl. Mech., 152, No. 4, 127–133, 257–258 (2018).

  11. L. X. Ma and Q. X. Qi, J. Vib. Shock, 36, No. 15, 111–117 (2017).

    Google Scholar 

  12. K. H. Gao and T. Xu, J. Vib. Shock, 36, No. 20, 100–106 (2017).

    Google Scholar 

  13. R. N. Cao and M. H. Li, J. Vib. Shock, 36, No. 18, 202–206 (2017).

    Google Scholar 

  14. Y. Wang, J. Earthqu. Eng., 25, No. 4, 637–642 (2018).

    Google Scholar 

  15. S. M. Hosamani, B. B. Kulkarni, R. G. Boli, and V. M. Gadag, Appl. Math. Nonlinear Sci., 2, No. 1, 131–150 (2017).

    Article  MathSciNet  Google Scholar 

  16. Y. M. Cao, and H. Xia, J. Southwest Jiaotong Univ., 52, No. 5, 902–909 (2017).

    Google Scholar 

  17. Z. P. Huang, and Y. B. Cao, World Earthqu. Eng., 33, No. 4, 87–93 (2017).

    Google Scholar 

  18. X. Y. Xu, and Y. Xiong, J. Bldg. Struct., 38, No. 5, 43–51 (2017).

    Google Scholar 

  19. M. Lara, Appl. Math. Nonlinear Sci., 3, No. 2, 537–552 (2018).

    Article  MathSciNet  Google Scholar 

  20. X. F. Zhang, and A. Q. Li, J. Build. Struct., 39, No. 1, 109–119 (2018).

    Google Scholar 

  21. X. Z. Chen, and W. Li, Earthqu. Eng. Eng. Vib., 38, No. 4, 093–99 (2018).

    Google Scholar 

  22. J. Y. Xue, and J. M. Jia, J. Build. Struct., 39, No. 12, 1–10 (2018).

    Google Scholar 

  23. J. Wang, J. Earthqu. Eng., 40, No. 3, 30–37 (2018).

    Google Scholar 

  24. F. Aghili. Multibody System Dynamics, 48, No. 2, 193–209, (2020).

  25. T. A. Sulaiman, and H. Bulut, 4, No. 2, 513–522 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 103–111, January, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Martínez, R. Analysis for Transverse Shake Vibration of High-Rise Buildings Based on Partial Differential Equation. Russ Phys J 64, 118–129 (2021). https://doi.org/10.1007/s11182-021-02307-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02307-4

Keywords

Navigation