Skip to main content

Advertisement

Log in

Structure, Phase Composition and Properties of Rail Running Surface at Extremely Long Operation Time

  • Published:
Russian Physics Journal Aims and scope

The paper presents investigations of the structure, phase composition and properties of the rail running after bulk steel hardening. Investigations are performed at a different depth by using modern techniques of material physics in extremely long operation conditions (gross weight of 1411 million tons). The Rockwell hardness measurements at a depth ranging from 2 to 10 mm, show a decrease in the hardness level from 37.1 to 35.8 HRC and in the microhardness – from 1481 to 1210 MPa, respectively. The multiple modifications of the rail running surface include the disintegration of lamellar perlite and the formation of the submicron size subgrain structure varying between 100 and 150 nm; the formation of 30–55 nm carbide phase nanoparticles on the grain boundaries and in the subgrain volume; the growth in microdistortions and the crystal lattice parameter of the α-Fe solid solution; the increase in the scalar dislocation density. Possible reasons of these changes are discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Gromov, O. A. Peregudov, and Yu. F. Ivanov, et al., Evolution of Structure and Phase Composition of Rail Metal During Long-Term Operation [in Russian], SB RAS, Novosibirsk (2017).

    Google Scholar 

  2. Yu. Ivanisenko, Lojkowski W., and R. Z. Valiev, et al., Acta Mater., 51, No. 18, 5555–5570 (2003).

    Article  ADS  Google Scholar 

  3. W. Lojkowski, M. Djahanbakhsh, G. Bürkle, et al., Mat. Sci. Eng. A-Struct., 303, No. 1–2, 197–208 (2001). DOI: https://doi.org/10.1016/S0921-5093(00)01947-X.

    Article  Google Scholar 

  4. Yu. Ivanisenko, I. Maclaren, X. Souvage, et al., Acta Mater., 54, No. 6, 1659–1669 (2006). DOI: https://doi.org/10.1016/j.actamat.2005.11.034.

    Article  ADS  Google Scholar 

  5. J.-W. Seo, H.-K. Jun, S.-J. Kwon, and D.-H. Lee, Int. J. Fatigue, 83, 184–194 (2016). DOI: https://doi.org/10.1016/j.ijfatigue.2015.10.012.

    Article  Google Scholar 

  6. R. Lewis, P. Christoforou, W. J. Wang, et al., Wear, 430–431, 383–392 (2019). DOI: https://doi.org/10.1016/j.wear.2019.05.030.

    Article  Google Scholar 

  7. R. Skrypnyk, M. Ekh, J. C. O. Nielsen, and B. A. Pålsson, Wear, 428–429, 302–314 (2019). DOI: https://doi.org/10.1016/j.wear.2019.03.019.

    Article  Google Scholar 

  8. D. Kim, L. Quagliato, D. Park, and N. Kim, Wear, 420–421, 184–194 (2019). DOI: https://doi.org/10.1016/j.wear.2018.10.015.

    Article  Google Scholar 

  9. Yu. F. Ivanov, O. A. Peregudov, K. V. Morozov, et al., IOP Conf. Ser.: Mater. Sci. Eng., 112, 012038 (2016). DOI: https://doi.org/10.1088/1757-899X/112/1/012038.

    Article  Google Scholar 

  10. V. E. Gromov, O. A. Peregudov, Y. F. Ivanov, et al., AIP Conf. Proc., 1783, 020069 (2016).

    Article  Google Scholar 

  11. V. E. Gromov, A. A. Yuriev, Yu. F. Ivanov, et al., Mater. Lett., 209, 224–227 (2017). DOI: https://doi.org/10.1016/j.matlet.2017.07.135.

    Article  Google Scholar 

  12. A. A. Yur’ev, V. E. Gromov, K. V. Morozov, and O. A. Peregudov, Steel Transl., 47, 658–661 (2017). DOI: https://doi.org/10.3103/S0967091217100126.

    Article  Google Scholar 

  13. F. R. Egerton, Physical Principles of Electron Microscopy. Springer International Publishing, Basel (2016).

    Book  Google Scholar 

  14. C. S. S. R. Kumar, ed., Transmission Electron Microscopy. Characterization of Nanomaterials, Springer, New York (2014).

    Google Scholar 

  15. C. B. Carter and D. B. Williams, Transmission Electron Microscopy, Springer International Publishing, Berlin (2016).

    Book  Google Scholar 

  16. P. B. Hirsch, A. Howie, R. B. Nicholson, et al., Electron Microscopy of Thin Crystals [Russian translation], Mir, Moscow (1968).

    Google Scholar 

  17. L. M. Utevskii, Diffraction Electron Microscopy in Metal Science [in Russian], Metallurgiya, Moscow (1973).

    Google Scholar 

  18. G. Thomas and M. J. Goringe, Transmission Electron Microscopy of Materials [Russian translation], Nauka, Moscow (1983).

    Google Scholar 

  19. N. A. Koneva, E. V. Kozlov, L. I. Trishkina, and D. V. Lychagin, in: Proc. Int. Sci. Conf. ‘New Methods in Physics and Deformable Body Mechanics,” TSU, Tomsk (1990), pp. 83–93.

    Google Scholar 

  20. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, Radiographic and Electrooptic Analysis [in Russian], MISIS, Moscow (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Ivanov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 71–77, January, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, Y.F., Kormyshev, V.E., Gromov, V.E. et al. Structure, Phase Composition and Properties of Rail Running Surface at Extremely Long Operation Time. Russ Phys J 64, 82–88 (2021). https://doi.org/10.1007/s11182-021-02303-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02303-8

Keywords

Navigation