Skip to main content

Modeling of Dielectric Relaxation in Clays at Negative and Positive Temperatures

Experimental data are presented on measuring the complex dielectric permittivity (CDP) of clays completely moistened with distilled water in the frequency range from 1 kHz to 8.5 GHz at temperatures from –15 to +25°C. Modeling of the experimental dependences is carried out by a multirelaxation model that takes into account relaxation of free and bound water, as well as relaxation at the bound water – mineral and bound water–air interfaces. It is shown that at temperatures below –5°C, a relaxation process appears in the CDP spectrum due to polarization at the bound water–ice or ice–mineral interface. The relationship between the parameters of this relaxation process and the petrophysical characteristics of the rock is found.

This is a preview of subscription content, access via your institution.


  1. V. L. Mironov, P. P. Bobrov, S. V. Fomin, and A. Yu. Karavaiskii, Russ. Phys. J., 56, No. 3, 319–324 (2013).

    Article  Google Scholar 

  2. A. Revil, Water Resources Res., 49, 306–327 (2013).

    Article  ADS  Google Scholar 

  3. S. Kruschwitz, M. Halisch, C. Prinz, et al., Int. Symp. Soc. Core Analysts (SCA2017-080). Vienna, Austria (2017).

  4. N. Wagner, T. Bore, J.-C. Robinet, et al., J. Geophys. Res.: Solid Earth, 118, No. 9, 4729–4744 (2013).

    Article  ADS  Google Scholar 

  5. T. Bore, M. Schwing, M. L. Serna, et al., IEEE Trans. Geosci. Remote Sens., 56, Iss. 8, 4702–4713 (2018).

    Article  ADS  Google Scholar 

  6. Y. Chen and D. Or, Water Resources Res., 42, (2006). W06424. DOI:

  7. M. I. Epov, P. P. Bobrov, V. L. Mironov, and A. V. Repin, Russian Geology and Geophysics, 52, No. 9, 1028–1034 (2011).

    Article  ADS  Google Scholar 

  8. A. S. Lapina and P. P. Bobrov, Prog. Electromagn. Res., 45, 9–16 (2016).

    Article  Google Scholar 

  9. P. P. Bobrov, V. N. Krasnoukhova, E. S. Kroshka, and A. S. Lapina, Russ. Phys. J., 60, No. 4, 711–716 (2017).

    Article  Google Scholar 

  10. P. P. Bobrov and O. V. Kondratieva, Proceed. of XII Intern. conf. “Physics of Dielectrics” (Dielectrics - 2011), Vol. 1, St. Petersburg (2011).

  11. P. P. Bobrov, A. V. Repin, and O. V. Rodionova, IEEE Trans. Geosci. Remote Sens., 53, 2366–2372 (2015).

    Article  ADS  Google Scholar 

  12. S. A. Komarov and V. L. Mironov, Microwave Sounding of Soils [in Russian], Nauka, Novosibirsk (2000).

    Google Scholar 

  13. L. A. Klein and C. T. Swift, IEEE Trans. Ant. Prop., AP-25, No. 1, 104–111 (1977).

    Article  ADS  Google Scholar 

  14. V. V. Chukin, Model of Dielectric Properties of Water and Ice [in Russian], Certificate of state registration of a computer program No. 2010616606.

  15. А. V. Repin, O. V. Rodionovа, and M. Y. Shumskayte, Progress in Electromagnetics Research Symposium – Spring (PIERS), St. Petersburg, Russia (2017). DOI:

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. V. Repin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 58–63, January, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Repin, A.V., Rodionova, O.V. & Kroshka, E.S. Modeling of Dielectric Relaxation in Clays at Negative and Positive Temperatures. Russ Phys J 64, 67–73 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • complex dielectric permittivity
  • dielectric relaxation
  • interlayer polarization
  • kaolin clay
  • bentonite clay
  • bound water