Skip to main content
Log in

Regarding Corrections to the Stokes Force in the Knudsen Number

  • Published:
Russian Physics Journal Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

With the help of the classical Boltzmann kinetic equation, a correction to the Navier–Stokes equation has been found in the form of a biharmonic term in the Laplace operator. It is shown that upon taking this term into account, corresponding corrections in the Knudsen number appear in the Stokes formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Prandtl and O. G. Tietjens, Fundamentals of Hydro- and Aeromechanics, Dover Publications, New York (2011).

    MATH  Google Scholar 

  2. H. Lamb, Hydrodynamics, Dover Publications, New York (1945).

    MATH  Google Scholar 

  3. S. A. Khristianovich, V. G. Gal’perin, M. D. Millionshchikov, and L. A. Simonov, Applied Gas Dynamics [in Russian], Central Aerodynamics Institute (TsAGI), Moscow (1948).

  4. N. E. Zhukovskii, Collected Works, Vol. 2, Hydrodynamics [in Russian], GITTL, Moscow (1949).

  5. H. W. Liepmann and A. E. Puckett, Introduction to Aerodynamics of a Compressible Fluid, Chapman & Hall, London (1947).

    MATH  Google Scholar 

  6. N. A. Slezkin, Dynamics of a Viscous Incompressible Liquid [in Russian], GITTL, Moscow (1955).

  7. V. G. Levich, Physical-Chemical Hydrodynamics [in Russian], Fizmatgiz Publishing House, Moscow (1959).

  8. G. Birkhoff, Hydrodynamics: A Study in Logic, Fact, and Similitude, Princeton University Press, Princeton (1960).

    Book  Google Scholar 

  9. J. Serrin, Mathematical Principles of Classical Fluid Mechanics, Springer Verlag, Berlin (1959).

    Book  Google Scholar 

  10. N. E. Kochin, I. A. Kibel’, and N. V. Roze, Theoretical Hydromechanics [in Russian], Fizmatlit Publishing House, Moscow (1963).

  11. L. M. Milne-Thomson, Theoretical Hydrodynamics, Dover Publications, New York (2011).

    MATH  Google Scholar 

  12. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics [in Russian], Nauka, Moscow (1965–1967).

  13. H. Rouse, Elementary Mechanics of Fluids, Dover Publications, New York (2011).

    Google Scholar 

  14. L. I. Sedov, Mechanics of a Continuous Medium [in Russian], Nauka, Moscow (1970).

  15. I. S. Sokol’nikov, Tensor Analysis: Theory and Applications in Geometry and Mechanics of Continuous Media [in Russian], Nauka, Moscow (1971).

  16. A. A. Il’yushin, Mechanics of a Continuous Medium [in Russian], Moscow State University Publishing House, Moscow (1971).

  17. A. V. Golubeva, Continuum Mechanics Course [in Russian], Vysshaya Shkola, Moscow (1972),

  18. G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge (2000).

    Book  Google Scholar 

  19. M. A. Lavrent’ev and B. V. Shabat, Problems of Hydrodynamics and Their Mathematical Models [in Russian], Nauka, Moscow (1973).

  20. J. Mays, Theory and Problems of the Mechanics of Continuous Media [Russian translation], Mir, Moscow (1974).

  21. C. Truesdell, Elementary Course of Rational Mechanics of Continuous Media [Russian translation], Mir, Moscow (1975).

  22. H. P. Greenspan, Theory of Rotating Liquids, Cambridge University Press, London (1968).

    Google Scholar 

  23. L. V. Ovsyannikov, Introduction to the Mechanics of Continuous Media, Novosibirsk State University, Novosibirsk (1976–1977).

    Google Scholar 

  24. S. W. Wallander, Lectures on Hydro- and Aeromechanics [in Russian], Leningrad State University, Leningrad (1978).

  25. B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics [in Russian], Nauka, Moscow (1978).

  26. S. A. Khristianovich, Mechanics of a Continuous Medium [in Russian], Nauka, Moscow (1981).

  27. E. B. Gledzer, F. V. Dobzhanski, and A. M. Obukhov, Systems of Hydrodynamic Type and Their Applications [in Russian], Nauka, Moscow (1981).

  28. V. L. Berdichevskii, Variational Principles of Continuum Mechanics [in Russian], Nauka, Moscow (1983).

  29. Ya. B. Zel’dovich, Selected Works: Chemical Physics and Hydrodynamics [in Russian], Nauka, Moscow (1984).

  30. V. M. Aleksandrov and E. V. Kovalenko, Problems of Continuum Mechanics with Mixed Boundary Conditions [in Russian], Nauka, Moscow (1986).

  31. A. S. Monin, Theoretical Principles of Geophysical Hydrodynamics [in Russian], Gidrometeoizdat, Leningrad (1988).

  32. G. G. Chernyi, Gas Dynamics [in Russian], Nauka, Moscow (1988).

  33. V. P. Krainov, Qualitative Methods of Physical Kinetics and Hydrodynamics [in Russian], Vysshaya Shkola, Moscow (1989).

  34. R. V. Gol’dshtein and V. M. Entov, Qualitative Methods in Continuum Mechanics [in Russian], Nauka, Moscow (1989).

  35. V. A. Aleshkevich, L. G. Dedenko, and V. A. Karavaev, Lectures on Mechanics of Continuous Media [in Russian], Moscow State University Press, Moscow (1998).

  36. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Butterworth-Heinemann, London (1987).

    Google Scholar 

  37. L. G. Loitsyanskii, Mechanics of Liquids and Gases [in Russian], Drofa, Moscow (2003).

  38. L. V. Ovsyannikov, Lectures on Basic Gas Dynamics [in Russian], Institute of Computer Studies, Moscow; Izhevsk (2003).

  39. R. P. Feynman, R. B. Leighton, and M. Sands, Feynman Lectures on Physics. Vol. 7. Physics of Continuous Media, Addison-Wesley, London (1964).

  40. B. E. Pobedrya and D. V. Georgievskii, Fundamentals of Continuous Mechanics. A Course of Lectures [in Russian], Fizmatlit, Moscow (2006).

  41. P. K. Rashevsky, Riemannian Geometry and Tensor Analysis [in Russian], Nauka, Moscow (1967).

  42. S. O. Gladkov, Russ. Phys. J., 61, No. 6, 1117–1120 (2018).

    Article  Google Scholar 

  43. S. O. Gladkov, Solid State Commun., 94, Nо. 9, 789–791 (1995).

  44. S. O. Gladkov, Pis’ma Zh. Tekh. Fiz., 31, No. 12, 71–75 (2005).

    Google Scholar 

  45. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Pergamon Press, Oxford (1981).

    Google Scholar 

  46. P. M. Résibois and M. De Leener, Classical Kinetic Theory of Liquids and Gases, J. Wiley & Sons, New York (1977).

    Google Scholar 

  47. S. O. Gladkov, Zh. Tekh. Fiz., 88, No. 3, 337–341 (2018).

    Google Scholar 

  48. S. O. Gladkov and S. B. Bogdankova, Inzh. Fiz. Zh., No. 1, 49–61 (2019).

  49. L. D. Landau and E. M. Lifshitz, Statistical Physics, Vol. 5, Butterworth-Heinemann, London (1980).

  50. L. D. Landau and E. M. Lifshitz, Mechanics, Vol. 1, Butterworth-Heinemann, London (1976).

  51. A. J. McConnell, Applications of Tensor Analysis, Dover Publications, New York (2011).

    Google Scholar 

  52. S. O. Gladkov, Bull. MSRU. Ser. Phys. Math., No. 1, 16–45 (2019).

  53. S. O. Gladkov, Bull. MSRU. Ser. Phys. Math., No. 3, 42–67 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Gladkov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 68–81, December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gladkov, S.O., Aung, Z. Regarding Corrections to the Stokes Force in the Knudsen Number. Russ Phys J 63, 2122–2140 (2021). https://doi.org/10.1007/s11182-021-02282-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02282-w

Keywords

Navigation