Skip to main content
Log in

Aluminum Nitride Doped with Transition Metal Group Atoms as a Material for Spintronics

  • Published:
Russian Physics Journal Aims and scope

The overview of scientific literature on the electric and magnetic properties of AlN doped with transition metal group atoms is presented. The review is based on the literature sources published mainly in the last 10 years. The doping was carried out by various methods: during the material growth (molecular beam epitaxy, magnetron sputtering, discharge techniques) or by implantation into the grown material. The presented theoretical and experimental data show that AlN doped with transition metal group atoms has ferromagnetic properties at temperatures above room temperature and is a promising material for spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Lei, D. Liu, P. W. Zhu, et al., Appl. Phys. Lett., 95, 162501 (2009).

    ADS  Google Scholar 

  2. Y. N. Makarov, O. V. Avdeev, and I. S. Barash, J. Cryst. Growth, 310, 881 (2008).

    ADS  Google Scholar 

  3. S. V. Mikhailovich, R. R. Galiev, A. V. Zuev, et al., Pisma Zh. Tekh. Fiz., 43, 9 (2017).

    Google Scholar 

  4. D. N. Slapovskii and A. Yu. Pavlov, Fiz. Tekh. Poluprovodn., 51, 461 (2017).

    Google Scholar 

  5. V. N. Bessolov, E. V. Gushchina, E. V. Konenkova, et al., Pisma Zh. Tekh. Fiz., 44, 96 (2018).

    Google Scholar 

  6. I. Wistrela, I. Schmied, M. Schneider, et al., Thin Solid Films, 648, 76 (2018).

    ADS  Google Scholar 

  7. S. O. Kucheyev, J. S. Williams, J. Zou, et al., J. Appl. Phys., 92, 3554 (2002).

    ADS  Google Scholar 

  8. R. M. J. Espitia, G. J. F. Murillo, and C. O. Lopez, IOP Conf. Ser.: J. Phys.: Conf. Series., 935, 012001 (2017). DOI: https://doi.org/10.1088/1742-6596/935/1/012001.

    Article  Google Scholar 

  9. B. P. Zakharchenya and V. L. Korenev, Usp. Fiz. Nauk, 175, Vyp. 6, 629 ( 2005).

  10. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys., 76, 323 (2004).

    ADS  Google Scholar 

  11. D. Kumar, J. Antifakos, M. G. Blamire, et al., Appl. Phys. Lett., 84, 5004 (2004).

    ADS  Google Scholar 

  12. S. J. Pearton, C. R. Abernathy, M. E. Overberg, et al., J. Appl. Phys., 93, 1 (2003).

    ADS  Google Scholar 

  13. R. M. Frazier, G. T. Thaler, C. R. Abernathy, et al., J. Appl. Phys., 94, 4956 (2003).

    ADS  Google Scholar 

  14. L.-J. Shi, L.-F. Zhu, Y.-H. Zhao, et al., Phys. Rev. B, 78, 195206 (2008).

    ADS  Google Scholar 

  15. S. S. Khludkov, I. A. Prudaev, and O. P. Tolbanov, Russ. Phys. J., 55, No. 8, 903-909 (2013).

    Google Scholar 

  16. S. S. Khludkov, I. A. Prudaev, and O. P. Tolbanov, Russ. Phys. J., 60, No. 12, 2177-2185 (2018).

    Google Scholar 

  17. X. Y. Cui, D. Fernandez-Heviab, B. Delley, et al., J. Appl. Phys., 101, 103917 (2007).

    ADS  Google Scholar 

  18. J. E. Medvedeva, A. J. Freeman, X. Y. Cui, et al., Phys. Rev. Lett., 94, 146602 (2005).

    ADS  Google Scholar 

  19. W. López-Pérez and R. González-Hernández, Comput. Mater. Sci., 91, 1 (2014).

    Google Scholar 

  20. S. W. Fan, K. L. Yao, Z. G. Huang, et al., Chem. Phys. Lett., 482, 62 (2009).

    ADS  Google Scholar 

  21. G. Yao, G. Fan, H. Xing, et al., JMMM, 331, 117 (2013).

    ADS  Google Scholar 

  22. M. J. R. Espitia, J. H. F. Diaz, and L. E. Castillo, Int. J. Phys. Sci., 11, 11 (2016).

    Google Scholar 

  23. A. Dar and A. Majid, Eur. Phys. J. Appl. Phys., 71, 10101 (2015).

    ADS  Google Scholar 

  24. A. Majid, M. Azmat, U. A. Rana, et al., Mater. Chem. Phys., 179, 316 (2016).

    Google Scholar 

  25. Y. Li, W. Fan, H. Sun, et al., J. Solid State Chem., 183, 2662 (2010).

    ADS  Google Scholar 

  26. A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, et al., Appl. Phys. Lett., 85, 4067 (2004).

    ADS  Google Scholar 

  27. H. X. Liu, S. Y. Wu, R. K. Singh, et al., Appl. Phys. Lett., 85,4076 (2004).

    ADS  Google Scholar 

  28. R. M. Frazier, G. T. Thaler, J. Y. Leifer, et al., Appl. Phys. Lett., 86, 052101 (2005).

    ADS  Google Scholar 

  29. Y. Endo, T. Sato, and A. Takita, IEEE Trans. Magn., 41, 2718 (2005).

    ADS  Google Scholar 

  30. S. Y. Wu, H. X. Liu, L. Gu, et al., Appl. Phys. Lett., 82, 3047 (2003).

    ADS  Google Scholar 

  31. R. M. Frazier, J. Stapleton, G. T. Thaler, et al., J. Appl. Phys., 94, 1592 (2003).

    ADS  Google Scholar 

  32. J. A. Raley, Y. K. Yeo, R. L. Hengehold, et al., J. Alloys Comp., 423, 184 (2006).

    Google Scholar 

  33. A. F. Hebard, R. P. Rairigh, J. G. Kelly, et al., J. Phys. D: Appl. Phys., 37, 511 (2004).

    ADS  Google Scholar 

  34. A. Shah, A. Mahmood, Z. Ali, et al., JMMM, 379, 202 (2015).

    ADS  Google Scholar 

  35. S. G. Yang, A. B. Pakhomov, S. T. Hung, et al., Appl. Phys. Lett., 81, 2418 (2002).

    ADS  Google Scholar 

  36. B. Fan, F. Zeng, C. Chen, et al., J. Appl. Phys., 106, 073907 (2009).

    ADS  Google Scholar 

  37. F. Zeng, B. Fan, and Y. C. Yang, J. Vac. Sci. Technol., 28, 62 (2010).

    Google Scholar 

  38. J. Zhang, X. Z. Li, B. Xu, et al., Appl. Phys. Lett., 86, 212504 (2005).

    ADS  Google Scholar 

  39. J. Zhang, S. H. Liou, and D. J. Sellmyer, J. Phys.: Condens. Matter., 17, No. 21, (2005).

  40. E. Wistrela, A. Bittner, M. Schneider, et al., J. Appl. Phys., 121, 115302 (2017).

    ADS  Google Scholar 

  41. V. I. Litvinov and V. K. Dugaev, Phys. Rev. Lett., 86, 5593 (2001).

    ADS  Google Scholar 

  42. A. Majid, R. Sharif, J. J. Zhu, et al., Appl. Phys. A, 96, 979 (2009).

    ADS  Google Scholar 

  43. A. Majid, R. Sharif, A. Ali, et al., Jpn. J. Appl. Phys., 48, 040202 (2009).

    ADS  Google Scholar 

  44. M.-H. Ham, S. Yoon, Y. Park, et al., J. Crystal Growth., 271, 420 (2004).

    ADS  Google Scholar 

  45. R. Frazier, G. Thaler, M. Overberg, et al., Appl. Phys. Lett., 83, 1758 (2003).

    ADS  Google Scholar 

  46. R. Wu, N. Jiang, J. Jian, et al., Integr. Ferroel.: An Int. J., 146, 54 (2013).

    ADS  Google Scholar 

  47. Y. Yang, Q. Zhao, X. Z. Zhang, et al., Appl. Phys. Lett., 90, 092118 (2007).

    ADS  Google Scholar 

  48. X. D. Gao, E. Y. Jiang, and H. H. Liu, et al., Appl. Surf. Sci., 253, 5431 (2007).

    ADS  Google Scholar 

  49. X. H. Ji, S. P. Lau, S. F. Yu, et al., Appl. Phys. Lett., 90, 193118 (2007).

    ADS  Google Scholar 

  50. V. L. Mazalova, Y. V. Zubavichus, D. S. Chub, et al., IOP Publ. J. Phys.: Conf. Ser., 430, 012112 (2013).

    Google Scholar 

  51. T. J. Regan, H. Ohldag, C. Stamm, et al., Phys. Rev., B 64, 214422 (2001).

    ADS  Google Scholar 

  52. H. Li, G. M. Cai, and W. J. Wang, AIP Advances, 6, 065025 (2016).

    ADS  Google Scholar 

  53. D. Pan, J. K. Jian, A. Ablat, et al., J. Appl. Phys., 112, 053911 (2012).

    ADS  Google Scholar 

  54. H. Tanaka, W. M. Jadwisienczak, S. Kaya, et al., J. Electron. Mater., 42, 844 (2013).

    ADS  Google Scholar 

  55. J. Xiong, P. Guo, Y. Cai, et al., J. Alloys Comp., 606, 55 (2014) 55.

  56. C. Zhao, Q. Wan, J. Dai, et al., Opt. Quant. Electron., 49, 116 (2017).

    Google Scholar 

  57. C. Zhao, Q. Wan, J. Dai, et al., Front. Optoelectron. (2017); https://doi.org/10.1007/s12200-017-0728-2.

  58. H. Li, Q. H. Bao, B. Song, et al., Solid State Commun., 148, 406 (2008).

    ADS  Google Scholar 

  59. Y. Ren, D. Pan, J. Jian, et al., Integr. Ferroel., An Int. J., 146, 154 (2013).

    ADS  Google Scholar 

  60. S. L. Yang, R. S. Gao, P. L. Niu, et al., Appl. Phys. A, 96, 769 (2009).

    ADS  Google Scholar 

  61. Y. Q. Chang, D. B. Wang, X. H. Luo, et al., Appl. Phys. Lett., 83, 4020 (2003).

    ADS  Google Scholar 

  62. D. Q. Han, Z. F. Wu, Z. H. Wang, et al., Nanotechn., 27, 135603 (2016).

    Google Scholar 

  63. K. Y. Ko, Z. H. Barber, M. G. Blamire, et al., J. Appl. Phys., 100, 083905 (2006).

    ADS  Google Scholar 

  64. X. Liu, J. Mi, B. Zhang, et al., J. Alloys Comp., 731, 1037 (2018).

    Google Scholar 

  65. S. S. Khludkov, O. P. Tolbanov, M. D. Vilisova, and I. A. Prudaev, Semiconductor Devices Based on Gallium Arsenide with Deep Impurity Centers, ed. O. P. Tolbanov, Izd. Tomsk. Universiteta, Tomsk (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Khludkov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 162–172, November, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khludkov, S.S., Prudaev, I.A., Root, L.O. et al. Aluminum Nitride Doped with Transition Metal Group Atoms as a Material for Spintronics. Russ Phys J 63, 2013–2024 (2021). https://doi.org/10.1007/s11182-021-02264-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02264-y

Keywords

Navigation