Skip to main content
Log in

Effect of Prolonged Thermal Exposure on Microstructure and Mechanical Properties of Zr – 1 wt.% Nb and Ti – 45 wt.% Nb Ultrafine-Grained Bioinert Alloys

  • Published:
Russian Physics Journal Aims and scope

The results on thermal stability of the microstructure and mechanical properties of Zr – 1 wt.% Nb and Ti – 45 wt.% Nb ultrafine-grained alloys subjected to long-term thermal annealing at a temperature of 400°С are presented. It is shown that in a Zr – 1 wt.% Nb ultrafine-grained alloy an increase in the annealing duration from 5 to 360 hr leads to a growth of the structural elements (grains, subgrains, fragments) of the α-Zr matrix phase and β-Nb particles. This is a consequence of the recrystallization processes, which gives rise to softening of the alloy and a decrease in their microhardness and yield stress. It is found out that an annealing treatment for as long as 360 hr does not affect the structural element size of β-phase in the Ti – 45 wt.% Nb alloy but favors a noticeable grain growth in α- and ω-phases. It is demonstrated that disordering of the Ti – 45 wt.% Nb alloy and a decrease in its mechanical characteristics are due to the recovery processes at the grain boundaries, an increase in the nanosized grains of α- and- ω-phases, and their decreased contribution to dispersion hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Niinomi, Yi Liu, M. Nakai, et al., Regener. Biomater., 3. No. 3, 173 (2016).

  2. М. Dinu, S. Franchi, V. Pruna, et al., Titanium in Medical and Dental Applications (Ed. Francis H. Froes and Ma Qian), Woodhead Publishing (2018).

    Google Scholar 

  3. Q. Chen and G. A. Thouas, Mater. Sci. Eng. R, 87, 1 (2015).

    Article  Google Scholar 

  4. Y. Kajima and A. Takaichi , Health Care: Current Rev., 3, No. 1, 1000137-1 (2015).

    Google Scholar 

  5. A. Heltha, S. Pilza, T. Kirstena, et al., J. Mech. Behav. Biomed. Mater., 65, 137 (2017).

    Article  Google Scholar 

  6. R. Z. Valiev, A. P. Zhilyaev, and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications, John Wiley & Sons, New Jersey (2014).

    Google Scholar 

  7. A. M. Glezer, E. V. Kozlov, N. A. Koneva, et al., Plastic Deformation of Nanostructured Materials, Boca Raton: CRC Pess Taylor&Francic Croup (2017).

    Book  Google Scholar 

  8. A. Panigrahi, M. Bönisch, T. Waitz, et al., J. Alloys Compd., 628, 434 (2015).

    Article  Google Scholar 

  9. M. Bönisch, A. Panigrahi, M. Calin, et al., J. Alloys Compd., 697, 300 (2017).

    Article  Google Scholar 

  10. Yu. P. Sharkeev, A.Yu. Eroshenko, I. A. Glukhov, et al., AIP Conf. Proc., AIP Publishing LLC, N. Y. (2015).

  11. A.Yu. Eroshenko, A. M. Mairambekova, Yu. P. Sharkeev, et al., Lett. Mater., 7, No. 4, 469 (2017).

  12. A.Yu. Eroshenko, Yu. P. Sharkeev, I. A. Glukhov, et al., Russ. Phys. J., 61, No. 10, 1899–1908 (2019).

  13. A.Yu. Eroshenko, Yu. P. Sharkeev, M. A. Khimich, et al., Lett. Mater., 10, No. 1, 54 (2020).

  14. ASTM E1382–97(2010). Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis.

  15. R. R. Boyer, Materials Properties Handbook: Titanium Alloys, ASM International (1994).

  16. E. W. Colings, Physical Metallurgy of Titanium Alloys, American Society for Metals, Metals Park, OH (1984).

    Google Scholar 

  17. Y. Takemoto, M. Hida, and A. Sakakibara, J. Jpn. Inst. Met., No. 57, 261 (1993).

    Article  Google Scholar 

  18. H. Gleiter, Acta Mater., 48, No. 1, 1 (2000).

    Article  ADS  Google Scholar 

  19. G. Dirras, D. Tingaud, D. Uedа, et al., Mater. Lett., 206, No. 1, 214 (2017).

  20. C. V. Lee, C. P. Ju, and J. H. Creen Lin, J. Oral Rehabilitation, 29, 314 (2002).

    Article  Google Scholar 

  21. M. J. Lai, T. Li, and D. Raabea, Acta Mater., 151, 67 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Eroshenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 9–16, November, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eroshenko, A.Y., Sharkeev, Y.P., Khimich, M.A. et al. Effect of Prolonged Thermal Exposure on Microstructure and Mechanical Properties of Zr – 1 wt.% Nb and Ti – 45 wt.% Nb Ultrafine-Grained Bioinert Alloys. Russ Phys J 63, 1846–1853 (2021). https://doi.org/10.1007/s11182-021-02242-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02242-4

Keywords

Navigation