Skip to main content

Advertisement

Log in

Ion-Assisted α-Al2O3 Coating Deposition by Anodic Arc Evaporation at 500–550°С

  • Published:
Russian Physics Journal Aims and scope

The paper studies the α-phase formation and structure of Al2O3 coatings deposited by the anodic arc evaporation in the low temperature range of 500–550°С. The current density of the ion assistance is varied up to 20 mA/cm2 and the ion energy ranges between 25–150 eV. The coating deposition rate is constant and equals 3 μm/h. The X-ray diffraction and infrared analyses are used to investigate the phase composition of the Al2O3 coating. It is found that the α-phase formation occurs at a 75–100 V bias voltage threshold, and the α-phase is stable within the limited range of the ion energy. The growth in the ion energy leads to the size reduction of the α-phase nanocrystallites and the coating amorphization. The coating structure is characterized by the crystallographic texture (300), which probably dominates due to the α-phase formation at the orientation ratio (440)γ-Al2O3/(300)α-Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Holm, R. Ahuja, Y. Yourdshahyan, et al., Phys. Rev. B, 59, No. 20, 12777 (1999).

    Article  ADS  Google Scholar 

  2. W. H. Gitzen, Alumina as a Ceramic Material. American Ceramic Society, Columbus (1970).

    Google Scholar 

  3. P. Jin, S. Nakao, S. X. Wang, and L. M. Wang, Appl. Phys. Lett., 82, 1024 (2003).

    Article  ADS  Google Scholar 

  4. J. M. Andersson, E. Wallin, U. Helmersson, et al., Thin Solid Films, 513, 57–59 (2006).

    Article  ADS  Google Scholar 

  5. Y. Yamada-Takamura, F. Koch, H. Maier, and H. Bolt, Surf. Coat. Technol., 142–144, 260–264 (2001).

    Article  Google Scholar 

  6. Y. Cheng, W. Qiu, K. Zhou, et al., Mater. Res. Express, 6, No. 086412 (2019).

    Article  ADS  Google Scholar 

  7. N. V. Gavrilov, A. S. Kamenetskikh, S. N. Paranin, et al., Instrum. Exp. Tech., 60, No. 5, 742 (2017).

    Article  Google Scholar 

  8. N. V. Gavrilov, A. S. Kamenetskikh, P. V. Tretnikov, et al., Surf. Coat. Technol., 337, 453 (2018).

    Article  Google Scholar 

  9. A. S. Kamenetskikh, N. V. Gavrilov, V. I. Solomonov, et al., IOP Conf. Ser.: J. Phys.: Conf. Ser., 1115, 032073 (2018).

    Article  Google Scholar 

  10. A. J. Maeland, R. Rittenhouse, W. Lahar, et al., Thin Solid Films, 21, 67 (1974).

    Article  ADS  Google Scholar 

  11. A. S. Barker, Phys. Rev., 132, No. 4, 1474 (1963).

    Article  ADS  Google Scholar 

  12. C. H. Shek, J. K. L. Lai, T. S. Gu, et al., Nanostruct. Mater., 8, No. 5, 605 (1997).

    Article  Google Scholar 

  13. Y. T. Chu, J. B. Bates, C. W. White, et al., J. Appl. Phys., 64, 3727 (1988).

    Article  ADS  Google Scholar 

  14. J. M. McHale, A. Auroux, A. J. Perrotta, et al., Science, 277, 788 (1997).

    Article  Google Scholar 

  15. J. Houska, Surf. Coat. Technol., 235, 333 (2013).

    Article  Google Scholar 

  16. J. P. Zhao, X. Wang, Z. Y. Chen, et al., J. Phys. D: Appl. Phys., 30, 5 (1997).

    Article  ADS  Google Scholar 

  17. L. W. Finger and R. M. Hazen, J. Appl. Phys., 49, 5823 (1978).

    Article  ADS  Google Scholar 

  18. O. Zywitzki, G. Hoetzsch, F. Fietzke, et al., Surf. Coat. Technol., 82, 169 (1996).

    Article  Google Scholar 

  19. O. Zywitzki and G. Hoetzsch, Surf. Coat. Technol., 94-95, 303–308 (1997).

    Article  Google Scholar 

  20. T. C. Chou and T. G. Nieh, J. Am. Ceram. Soc., 74, No. 9, 2270 (1991).

    Article  Google Scholar 

  21. T. C. Chou and T. G. Nieh, Thin Solid Films, 221, No. 1–2, 89–97 (1992).

    Article  ADS  Google Scholar 

  22. E. Wallin, T. I. Selinder, M. Elfwing, and U. Helmersson, EPL, 82, No. 3, 36002 (2008).

    Article  ADS  Google Scholar 

  23. T. Kohara, H. Tamagaki, Y. Ikari, et al., Surf. Coat. Technol., 185, 166 (2004).

    Article  Google Scholar 

  24. J. P. Biersack and J. F. Ziegler, Ion Implantation Techniques, vol. 10, H. Ryssel, H. Glawischnig, eds, Springer Series in Electrophysics, Springer, Berlin; Heidelberg (1998).

    Google Scholar 

  25. M. Prenzel, A. Kortmann, A. Stein, et al., J. Appl. Phys., 114, No. 11, 113301 (2013).

    Article  ADS  Google Scholar 

  26. N. V. Gavrilov, A. S. Kamenetskikh, P. V. Tretnikov, and A.V. Chukin, IOP Conf. Ser.: J. Phys.: Conf. Ser., 1393, 012082 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kamenetskikh.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 144–150, October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamenetskikh, A.S., Gavrilov, N.V., Tretnikov, P.V. et al. Ion-Assisted α-Al2O3 Coating Deposition by Anodic Arc Evaporation at 500–550°С. Russ Phys J 63, 1797–1803 (2021). https://doi.org/10.1007/s11182-021-02236-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02236-2

Keywords

Navigation