Skip to main content
Log in

Generation of Submillisecond Beams of Deuterium Ions Based on a Vacuum Arc with a Gas-Saturated Zirconium Cathode

  • Published:
Russian Physics Journal Aims and scope

A vacuum arc discharge with a zirconium cathode saturated with deuterium is used to produce deuterium plasma in thermonuclear reaction studies and to generate deuterium ion beams for accelerator technology applications. This work presents the results of studies of the ion-emission properties of a vacuum arc discharge with durations of hundreds of microseconds using a Zr-deuterated cathode and the discharge parameters responsible for the formation of an ion beam, such as the angular, spatial and energy distribution of ions. A wide-aperture beam of deuterium ions based on this discharge is generated and an experimental study of its parameters is performed. It is shown that under certain conditions the fraction of deuterium ions in the ion beam can by nearly a factor of two exceed that of deuterium atoms in the cathode, reaching 60%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Anders, Cathodic Arcs: From Fractal Spots to Energetic Condensation, Springer, N. Y. (2008).

  2. G. A. Mesyats, Ectons in vacuum discharges: breakdown, spark, arc [in Russian], Nauka, Moscow (2000).

    Google Scholar 

  3. R. L. Boxman, D. M. Sanders, and P. J. Martin, Handbook of Vacuum Arc Science and Technology, Noyes, Park Ridge, NJ (1995).

    Google Scholar 

  4. I. G. Brown, Rev. Sci. Instrum., 65, 3061 (1994).

    Article  ADS  Google Scholar 

  5. H. Reich, P. Spädtke, and E. M. Oks, Rev. Sci. Instrum., 71, 707 (2000).

    Article  ADS  Google Scholar 

  6. E. Sokullu Urkac, A. Oztarhan, N. Kaya, et al., Nucl. Instrum. Methods Phys. Res. B, 261, 699 (2007).

    Article  ADS  Google Scholar 

  7. T. Schulke and A. Anders, IEEE Trans. Plasma Sci., 27, Iss. 8, 2081 (1999).

  8. A. G. Nikolaev, E. M. Oks, K. P. Savkin, et al., J. Appl. Phys., 116, 213303 (2014).

    Article  ADS  Google Scholar 

  9. A. G. Nikolaev, K. P. Savkin, G. Yu. Yushkov, and E. M. Oks, Rev. Sci. Instrum., 85, 02B501 (2014).

  10. V. P. Frolova, V. I. Gushenets, A. G. Nikolaev, et al., IEEE Trans. Plasma Sci., 45, 2070 (2017).

    Article  ADS  Google Scholar 

  11. A. G. Nikolaev, E. M. Oks, V. P. Frolova, and G. Yu. Yushkov, Russ. Phys. J., 60, No. 9, 1528 (2018).

    Article  Google Scholar 

  12. A. G. Nikolaev, E. M. Oks, V. P. Frolova, and G. Yu, Yushkov, Tech. Phys. Lett., 41, 880 (2015).

  13. V. P. Frolova, A. G. Nikolaev, E. M. Oks, and G. Yu. Yushkov, AIP Conf. Proc., 2011, 090004 (2018).

    Article  Google Scholar 

  14. E. M. Oks, G.Yu. Yushkov, P. J. Evans, et al., Nucl. Instrum. Methods Phys. Res. B, 127, 782 (1997).

    Article  ADS  Google Scholar 

  15. S. A. Barengolts, D. Yu. Karnaukhov, A. G. Nikolaev, et al., Tech. Phys., 60, 989 (2015).

    Article  Google Scholar 

  16. A. G. Nikolaev, E. M. Oks, V. P. Frolova, et al., Tech. Phys., 62, 701 (2017).

    Article  Google Scholar 

  17. A. G. Nikolaev, E. M. Oks, K. P. Savkin, et al., Rev. Sci. Instrum., 83, 02A501 (2012).

  18. A. G. Nikolaev, V. P. Frolova, E. M. Oks, et al., J. Phys.: Conf. Ser., 1393, 012050 (2019).

    Google Scholar 

  19. A. S. Bugaev, V. I. Gushenets, A. G. NIkolaev, et al., Russ. Phys. J., 43, No. 2, 96 (2000).

  20. A. G. Nikolaev, G. Y. Yushkov, K. P. Savkin, and E. M. Oks, Rev. Sci. Instrum., 83, 02A503 (2012).

  21. A. G. Nikolaev, G. Yu. Yushkov, K. P. Savkin, and E. M. Oks, IEEE Trans. Plasma Sci., 41, 1923 (2013).

    Article  ADS  Google Scholar 

  22. D. L. Shmelev, S. A. Barengolts, I. V. Uimanov, et al., J. Phys.: Conf. Ser., 652, 012041 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Nikolaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 124–131, October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, A.G., Oks, E.M., Frolova, V.P. et al. Generation of Submillisecond Beams of Deuterium Ions Based on a Vacuum Arc with a Gas-Saturated Zirconium Cathode. Russ Phys J 63, 1773–1782 (2021). https://doi.org/10.1007/s11182-021-02234-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02234-4

Keywords

Navigation