Skip to main content
Log in

Adhesive Wear of Copper Friction Pair in Inert Atmosphere Reduced by Nitrogen Ion Implantation

  • Published:
Russian Physics Journal Aims and scope

The paper studies mechanisms of increasing the adhesive wear resistance of the copper specimens after the bombardment by the nitrogen ions, which are coupled with a counterbody and operate in inert atmosphere. It is shown that the increase in the wear resistance is complex and connected with such mechanisms as solid solution hardening, size reduction of copper grains, fine CuN3 particle formation, dislocation density growth, and internal microscopic stress generation in the specimen surface layer. As compared to the initial state of the copper specimen, the wear resistance and microhardness of the ion-modified specimen increase approximately by 4 and 2.6 times, respectively, at the ion irradiation fluence of 9·1017 cm2. Further increase in the fluence leads to the reduction in the wear resistance and microhardness due to the pore growth in the surface layer caused by the nitrogen ion implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. F. Komarov, Ion Implantation in Metals [in Russian], Metallurgiya, Moscow (1990).

    Google Scholar 

  2. J. C. Szcancoski, C. E. Foerstera, C. Serbena, et al., Surf. Coat. Technol., 201, 1488–1494 (2006).

    Article  Google Scholar 

  3. F. Abdi and H. Savaloni, Trans. Nonferrous Met. Soc. China, 27, No. 3, 701–710 (2017).

    Article  Google Scholar 

  4. M. V. Fedorischeva, M. P. Kalashnikov, V. P. Sergeev, and V. V. Neufeld, Bull. Russ. Acad. Sci. Phys., 78, No. 8, 710–712 (2014).

    Article  Google Scholar 

  5. K. K. Shih, Wear, 105, No. 4, 341–347 (1985).

  6. A. H. Sari, M. K. Salem, and A. Shoorche, J. Fusion Energy, 30, 323–327 (2011).

    Article  ADS  Google Scholar 

  7. S. M. Myers, J. A. Knapp, D. M. Follstaedt, et al., Surf. Coat. Technol., 103–104, 287–292 (1998).

    Article  Google Scholar 

  8. S. B. Wang, P. R. Zhu, and W. J. Wang, Surf. Coat. Technol., 123, 173–176 (2000).

    Article  Google Scholar 

  9. W. Oliver and G. Pharr, J. Mater. Res., 7, No. 6, 1564–1583 (1992).

    Article  ADS  Google Scholar 

  10. S. A. Saltykov, Stereometric Metallography [in Russian], Metallurgiya, Moscow (1970).

    Google Scholar 

  11. P. B. Hirsch, A. Howie, R. B. Nicholson, et al., Electron Microscopy of Thin Crystals [Russian translation], Mir, Moscow (1968).

    Google Scholar 

  12. E. O. Hall, Proc. Phys. Soc. Lond., 64, 747–753 (1951).

    Article  ADS  Google Scholar 

  13. M. L. Bernshtein and V. A. Zaimovskii, Structure and Mechanical Properties of Metals [in Russian], Metallurgiya, Moscow (1970).

    Google Scholar 

  14. V. P. Sergeev, A. R. Sungatulin, M. P. Kalashnikov, et al., Adv. Mater. Res., 1085, 201–204 (2015).

    Article  Google Scholar 

  15. J. Friedel, Dislocations [Russian translation], Mir, Moscow (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Sergeev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 72–79, September, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeev, V.P., Kalashnikov, M.P., Sungatulin, A.R. et al. Adhesive Wear of Copper Friction Pair in Inert Atmosphere Reduced by Nitrogen Ion Implantation. Russ Phys J 63, 1530–1537 (2021). https://doi.org/10.1007/s11182-021-02202-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02202-y

Keywords

Navigation